Inheritance

C++ Object Oriented Programming
Pei-yih Ting
NTOUCS

25-1

Contents

< Basic Inheritance
*= Why inheritance
* How inheritance works
* Protected members
x Constructors and destructors
x Derivation tree
* Function overriding and hiding
*= Example class hierarchy

<+ Inheritance Design

* Exploring different
inheritance structure

x Direct solution to reuse code
* Alternative solutions

* Better design

* Final solutions

x Design rules (IS-A relationship,
Proper inheritance)

* Dubious designs

Object-Oriented Analysis

An object-orientated design provides a more natural and systematic
framework for specifying and designing a programming solution.

Program designs are almost always based on the program
specification, i.e. a document describing the exact requirements a
program is expected to achieve.

Four phases of the object-oriented analysis process:

m The identification of objects from the program specification.

m The identification of the attributes and behaviours of these objects.
m The identification of any super-classes.

m The specification of the behaviours of the identified classes.

Inheritance

< The distinction between an "object-based language" and an "object-
oriented language" is the ability to support inheritance (or derivation).

<+ Composition/aggregation and inheritance are the most important two
ways to construct object hierarchies.

+ In the OOA process, after objects are identified from the problem
domain and attributes and behaviors are modeled with classes in the
analysis process, the next important phase is the identification of
super-classes in the problem domain

< In the language level, a super-class defines the attributes and
behaviors that are common to all its sub-classes.

Base class Derived class
Super-class Vs. Sub-class
Parent class Child class

Basic Inheritance

25-5

The Basic Problem: Extension

< Imagine you have a class for describing students

class Student {
public:
Student();
~Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;
private:
char *m_name;
int m_age;

I3

class Student {
public:
Student();
~Student();
void setData(char *name, int age,
int stipend);
int getAge() const;
const char *getName() const;
int getStipend() const;
private:
char *m_name;
int m_age;
int m_stipend;

b

< Want to add fields to handle the requirements for graduate students
What is the problem of this design?

25-6

Not Good!

< In the above design

x Student becomes a general purpose class, a set of attributes and
interfaces are used for undergraduate students, while another set
of attributes and interfaces are used for graduate students
... a form with many redundant fields

x In the process of this change, all previously developed programs,
including those implementations of the Student class and those
codes that are the client programs of the Student class, have to
be recompiled.... This change is global, not limited to the part
you plan to add.

OCP: open-closed principle
Software entities (classes, modules, functions, etc.)

should be open for extension, but closed for modification.
25-7

A Solution — Separate Classes

< No redundant members, old codes

for Student need only change the
name to UnderGraduate.

class Undergraduate {
public:
Undergraduate();
~Undergraduate();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;
private:
char *m_name;
int m_age;

|3

class Graduate {
public:
Graduate();
~Graduate();
void setData(char *name,
int age, int stipend);
int getAge() const;
const char *getName() const;
int getStipend() const;
private:
char *m_name;
int m_age;
int m_stipend;

b
Why is this still a poor solution?
< Aclient program cannot treat both classes of objects in a uniform way,

ex. The library circulation system wants to check which students are
holding books overdue, it has to handle undergraduate and graduate
students with separate pieces of codes. <+Also, a lot of redundancy. .

Basic Inheritance in C++

<+ Declare a class Graduate that is derived from Student

class Graduate: public Student { Student is called the base

public:) o class, Graduate is called
Graduate(char *name, int age, int stipend); the derived class
int getStipend() const;

private: ﬁ—f new member functions |

int m_stipend;
¥

< All the data members (m_name and m_age) and most the member
functions (setData(), getAge(), getName()) of class Student are
automatically inherited by the Graduate class

<+ New member functions
Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
setData(name, age); // this is inherited from Student

int Graduate::getStipend() const {
return m_stipend;

Basic Inheritance (cont’d)

Note: A Graduate object i$ a Student object because

N Usages: a Graduate object provides the complete set of
interface functions of a Student object, i.e.,
Student student; they looks the same from the outside.

/\

Graduate

student.setData(*'Mel", 19);
Graduate gradStudent(**Ron", 24, 3000);

e Student ctor(), dior() ["+ Graduate
ctor(), dtor() | m_name = "Mel" getStipend() | I~ spudent i
setData() m_age = 19 T etDat | m_name = "Ron" !
getAge() setbata) |} o6 = 24 i
getName() getAge() O A S

getName() m_stipend = 3000

cout << student.getName() << " is " << student.getAge()
<< " years old undergraduate student\n"";
cout << gradStudent.getName() << " is " << gradStudent.getAge()

<< " years old and has a stipend of " << gradStudent.getStipend()

<< " dollars.\n"";
25-10

Basic Inheritance (cont’d)

< This would be illegal

int Graduate::getStipend() const {
if (m_age > 30)
return O;
return m_stipend;

}

< Private data member of the base class is implicitly declared/defined
but is still kept private from its derived class. (the boundary of base
class is maintained)

< This is legal
int Graduate::getStipend() const {
if (getAge() > 30)
return O;
return m_stipend;

}
< Back to OCP: Did you extend the functionality of the class Student?
Did you edit student.h or student.cpp?

25-11

Protected Data and Functions

< Can we give the derived class access to "private™ data of base class?
class Student {

public:
Student();
~Student();
ggg)i_setData(Char *name, int + The following is now legal
int getAge() const; int Graduate::getStipend() const {
const char *getName() const; if (m_age > 30)
protected: return 0; .
char *m name: return m_stipend;
int m_age;
h

Note: the encapsulation

<+ Who can access protected fields? perimeter is enlarged
a great deal with

* base class and friends of base class norotected" in your

* derived class and friends of derived design
classes

25-12

Basic Inheritance (cont’d)

< Most of the member functions of the base class are implicitly
inherited by the derived class except
= The constructor (including copy ctor)
* The assignment operator
* The destructor
< They are synthesized by the complier again if not explicitly defined.
The synthesized ctor, dtor, and assignment operator would chain
automatically to the function defined in the base class.

25-13

Inheritance and Constructors

<+ Rewrite Student using constructor

class Student {
public:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;
private:
char *m_name;
int m_age;

<+ In this case, the constructor for Graduate fails

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
setData(name, age); // this is inherited from Student

| error C2512: 'Student' : no appropriate default constructor available |
+ Why??

Graduate::Graduate(char *name, int age, int stipend) chaining
: Student(), m_stipend(stipend) {

setData(name, age); // this is inherited from Student
} Compiler insert this automatically 2514

Inheritance and Ctors (cont’d)

<+ In this case, the correct form of the constructor for Graduate is

Graduate::Graduate(char *name, int age, int stipend)
: Student(name, age), m_stipend(stipend) {
; —age); // setData() is inherited from Student

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

< You cannot initialize base class members directly in the initialization
list even if they are public or protected, i.e.
Graduate::Graduate(char *name, int age, int stipend)
: m_age(age), m_stipend(stipend)

error C2614: 'Graduate’ : illegal member initialization: 'm_age" is not a base
or member
< Base class guarantee

The base class will be fully constructed before the body of the

derived class constructor is entered y515

Copy Constructor

< Copy constructor is also a constructor. Member objects and base
class must be initialized through initialization list

+ For example: Compiler adds Base() invocation

class Derived: public Base { T automatically

ublic: i
P *._ Note:

\\\Derived::Derived(Derived &sre):
2 m_obj(src.m_obj)

{

Derived(Derived &src);

private:
Component m_obj; }

b

Derived::Derived(Derived &src): Base(src), m_obj(src.m_obj) {

} If you do not define a copy ctor, the compiler
would generate one exactly like this. 25-16

Inheritance and Destructors

< If we add a dynamically allocated string data member to Graduate to
store the student's home address, then Graduate requires a destructor

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

Student::~Student() {
cout << "'In Student ctor\n"";

delete[] m_name;
} cout << "'In Student dtor\n'";

}

Graduate::Graduate(char *name, int age, int stipend, char *address)
: Student(name, age), m_stipend(stipend) {
m_address = new char[strlen(address)+1];
strcpy(m_address, address);

cout << "'In Graduate ctor\n'; Graduate::~Graduate() {

} delete[] m_address;
cout << "'In Graduate dtor\n"";

} 25-17

Inheritance and Dtors (cont’d)

<+ What happens in main()

void main() {
Graduate student(**Michael', 24, 6000, " 8899 Storkes Rd.");
cout << student.getName() << " is " << student.getAge() << " years old and "
<< "has a stipend of "* <, student.getStipend() << "dollars.\n"*
<< "His address is " << student.getAddress() << "\n"";

}

The output is:

In Student ctor

In Graduate ctor

Michael is 24 years old and has a stipend of 6000 dollars.
His address is 8899 Storkes Rd. L
In Graduate dtor chaining
In Student dtor

+ The compiler automatically calls each dtor when the object dies.

+ The dtors are invoked in the opposite order of the ctors

x In destructing the derived object, the base object is still in scope and
functioning correctly.
25-18

Chaining of Assignment Operator

< By default, the compiler adds a “bit-wise copy” assignment operator
for every class which you do not define an assignment operator

< If you have a class hierarchy where a class Derived
inherits from a class Base. There are 4 possibilities in
defining their assignment operators:
1. If both classes do not have assignment operator: both are bit-wise copy
2. If you define Base& Base::operator=(Base &) but not
Derived& Derived::operator=(Derived &), then compiler synthesizes

Derived& Derived::operator=(Derived &rhs) {
Base::operator=(rhs); // calling your function

return *this;

¥

3&4. If you define Derived& Derived::operator=(Derived &rhs) yourself, you have
to call Base::operator=(rhs); in Derived::operator=(Derived) no matter it is
synthesized or not; otherwise the Base part of the object would not be copied.zs_

19

Layers of Inheritance

<+ Let us add a new type of graduate student
class ForeignGraduate: public Graduate {

class Student { L

public: public: _
Student(char *name, int age); ForelgnGraduate(_char fname, int age,
~Student(); int stipend,
void setData(char *name, int age); char *nationality);
int getAge() const; ~ForeignGraduate()
const char *getName() const; const char *getNationality();

private: private:
char *m_name; char *m_nationality;
int m_age; ¥

h ’

class Graduate: public Student {
public:
Graduate(char *name, int age, int stipend);
int getStipend() const;
private:
int m_stipend;

I3

25-20

Layers of Inheritance (cont’d)

= ctor of Student
Student::Student(char *name, int age) : m_age(age) {

m_name = new char[strlen(name)+1]; 7 Stuent

strcpy(m_name, name);

- .7
.-~ direct base class

. direct base class

- [ForeignGraduate

* ctor of Graduate invokes the ctor of its direct base class - Student

Graduate::Graduate(char *name, int age, int stipend)
: Student(name, age), m_stipend(stipend) {

Iridirect base class
\\ ’_‘7

* ctor of ForeignGraduate invokes the ctor of its direct base class - Graduate

ForeignGraduate::ForeignGraduate(char *name,
int age, int stipend, char *nationality)
: Graduate(name, age, stipend)
m_nationality = new char[strlen(nationality)+1];
strcpy(m_nationality, nationality);

Behavior Changing (Hiding)

In the previous example, suppose we would like to have a display()
member function in the Student class that shows the details of a
Student object on the screen, ex.

void Student::display() const {
cout << m_name << " is " << m_age << "years old.\n"";

}
The Graduate class automatically inherits this member function.
However, the output of this function for a Graduate object is in a
way short of many important data.

We would like to redefine this function in the derived class —
Graduate, such that it will show the stipend and address together.

void Graduate::display() const { // masks the inherited version of display()
cout << getName() << " is " << getAge() << ** years old.\n"";
cout << ""He has a stipend of ** << m_stipend << " dollars.\n"";
cout << ""His address is "* << m_address << ".\n"";

}
Note: function signature is exactly the same as in the base class. _,

25-21 2
. . y . . y
Behavior Changing (cont’d) Behavior Changing (cont’d)
< Example usage of the previous design: Avoid the redundancy of the common code, Student::display(),
Student student1("Alice”, 20); in the inherited version of display(), Graduate::display(), by
Graduate student2(**Michael", 24, 6000, *'8899 Storkes Rd."); void Graduate::display() const // masks the inherited version of display() {
Student::display(); // invoke the inherited codes
studentl.display(); // Student::display() . [- Student cout << ""He has a stipend of ** << m_stipend << "' dollars.\n"";
cout << "\n"; ctor(), dtor) | m name = "Mel" cout << "'His address is ** << m_address << "*.\n"’;
. . etAge age =
student2.display(); // Graduate::display() getNgré()e() m_age =19 } - - - -
Output: display() The functions defined in the base class are OK for most derived
Alice is 20 years old. *—Cior(), dfor()| *: Graduate classes. Only some of them need to be changed in the derived
Michael is 24 years old. getStipend()| ... classes. Ex.
He has a stipend of 6000 dollars. .M_.. - Student Ron | calculateArea() width*height
- - m_name = "Ron" | JAN
His address is 8899 Storke Rd. getAge() | mage = 24 |
getName() | i---==
ey | nsipend =30

< Note: display() interface usually
can enhance the encapsulation, replacing the

functionality of trivial accessor functions 2523

calculateArea()

1/2*TwoDimShape::calculateArea()
25-24

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
inheritance hierarchy.

Example: :
Machine

|

Appliance Vehicle

Real-World Examples Of Inheritance

<+ Microsoft Foundation Class Version 6.0
* A tree-style class hierarchy

< Java Class Library

/\ /N
‘ Mini ‘ ‘ Delivery ‘ | Limo | ‘ Sports ‘ Dump || Pickup
25-25 25-26
Microsoft Foundation Class Library Version 6.0
CObjcct
Applivalive Archilvclure File Services Gre
CCmdTarget Lucer objocts —LCFile —-CD
—CwinThread ~COocument Lxceptions -CMemFilo =t
LCWinApp —ColeDucunent —CExvepliun —CSharedFile L
—CuleControlMaodule LicileLinkinglioc —larchivekxception Lulestreamtile =
LIJEPJ appliratinn Lienlptiervarlne ANl weeprinm —UMnnikerl ila =t
CDucTempl ol | crivtiEdibue CDBExuipliun CAuynuMunikur File Cor
—Csinglseciwmpl sle “user ducuinienls Feriluerveplivg Llpatar b uper Ly —Lu - -
~CMultiDocTempl ate ~CDocltem +CInternetExcepbion ~CCachedDataPathProperty -Cln
Inheritance Deslian
LeoleTanplal eerver Eeolenansoh e T e oH Suppe DT eplinn Lesnbioril: Dre
—COIuD alaSuur vu FCRichEUILCnLr T L FCOluEx ueplivn —ChnlernslFily e
—Luleliroptource “user clisnt items FliMelispatchLxception Fliopherlile I
~ColeDropTarget —Coleserveritem +CResourceException LCHttpFile
ColeM resagoFiltnr Chnrthjeets nev orftem CllsnrFYrnpTinn CRerentFilAl sk
CConnectionMoint uscr server toms
—CLocObiectieryer
Window Support
—Cwnd M
—CM
Trame Windnwes inlng Nnxes Views nntrals
Ll ramAwWnd Liznialng Litview —iAnimateird Cwm
—cMnIchildwnd —Coammannialng —rorrivinw —CRurmn £g
Luser mo1 windows HCcolorDialog FCEdItVICW Leaitm apB utton
~CMDIFrameWnd —CFileDizlog ~CListWiew —CComboBox
Luser MOl workspaces LCFindRepl acenizlog LCRichEditview LcComboB oxEx _CRy
—CMiniFramewWnd Lrrnntialng LCTreevipw —CnareTimeCrrl L,
~usuer SDI winduwy FColuDialuy —Csuullvicw —CEdil | em
ColslHFramsWnd Lolesusyialog user scroll views CHeaderCerl
Lesplitterwnd _ruleChangeleonlialog Ll ormvisw _Cliotieyltrl un 25-28

Su)

Exploring Solutions to Inheritance

< The University database program

——————e: Student ctor(), dtor() | - Graduate Student
ctor(), dtor() | 'm name getStipend() | " Siudent ! ~
sett'liata(()) m_age getAddress() | | " hame :
etAge X :
getNgme() setData() Lmoage |

getAge() m_stipend
getName() m_address

< We would like to add a class Faculty, whose attributes include
{ m_name room # and building id of the office
m_age
m_address

m_rank Note that there is no stipend.

< Should Faculty be derived from Student or Graduate or none of both?

< Let us first try inheriting Faculty from Graduate since the two groups

have so much data in common 2520

Exploring Solutions (cont’d)

< Deriving Faculty from Graduate makes a very efficient reuse of codes
class Faculty: public Graduate { Student

public: ~
Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const;
private: JAN

char *m_rank;
b
<+ We are forced to ignore Graduate::m_stipend in ctor

Faculty::Faculty(char *name, int age, char *address, char *rank)
: Graduate(name, age, 0, address) {
m_rank = new char[strlen(rank)+K Zero is a dummy

strcpy(m_rank, rank); value for the stipend

+ However, the client can still do this

Faculty prof(*'Lin™, 40, "'#2 Bei-Ning"", ""Associate Professor'’);
cout << prof.getStipend();

You can spare a data member but cannot
This is NOT a good solution! turn off an interface of the base class.

25-30

Another Possible Solution

< How about deriving Faculty from Student because
Faculty requires all of the data from Student
class Faculty: public Student {

public:
Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const;
const char *getAddress() const; Ay
private:

char *m_address;
char *m_rank;

| Graduate || Faculty ‘

k
<+ What is the problem now?
* Faculty duplicates some codes in Graduate: m_address related
*= What happens if Student adds a field for "undergraduate advisor"?
* The problem is that Faculty is intrinsically not a Student.

“Inheritance SHOULD NOT be designed based on solely
implementation considerations — eg. code reuse.”

25-31

A Better Design

< Create a Person class and put everything common to all people in
that class, all other classes are derived from this class.

Person
getAge()
getName()
. m_age
+ Student is replaced by m_name
Undergraduate I
| |
Undergraduate Graduate Faculty
getStipend() getRank()
getAddress() getAddress()
m_stipend m_rank
m_address | m_address

4+ Should we eliminate UnderGraduate

and use only Person in its place? Is there any redundancy?

< Should Graduate be derived from Undergraduate? 25.32

Adding an Office Class

< Codes related to address could be merged into a single copy. How

Code for Office Solution

class Office: public Person {

) . ' public:
about encapsulating all data related to the address in the Office class? Office(char *name, int age, char address);
~Office()
< Anyone who needs an office can then inherit from Office. const char *getAddress() const; .
private: Poor dESIgn!!
<+ But Graduate and Faculty still need to , char *m_address; Problematic!!?
inherit name and age categories so this i C’,asgé;éaﬁé—t-e;-buf,iig6ﬁ;éé-{- -----------------------------
design forces us to this inheritance public:
‘ Graduate ‘ ‘ Faculty ‘ Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
p]) private:
Bad design!! Problematic!!? int m_stipend;
|
What's wrong? class Faculty: public Office {
Undergraduate Office . public:
9 | ‘ ‘ « If the Office has a clean() method, Faculty(char *name, int age, char *address, char *rank);
% The Faculty automatically has a ~Faculty();
clean() method. What does it mean? rf\(/)e?cset' char *getRank() const;
| Graduate || Faculty | « What if a faculty has two offices? P char '*m_rank;
25-33 1 25-34
Final Solution Final Solution (cont’d)
e ; ; : ; class Graduate: public Person {
< Back to our original inheritance design (good design) public-
Graduate(char *name, int age, int stipend, char *address);
~ int getStipend() const;
[i | const char* getAddress() const; -
[Undergraduate | | Graduate }—‘ [Faculty ’—’_‘ Office | pr:x?tr;-_stipend; class Faculty: public Person
Office m_office; / ic:
. i . . _ ; J/ public:
< Instead of having Graduate and Faculty inherit from Office, we b Faculty(char *name, int age, char *address, char *rank);
TN ~Faculty();

store an Office object within each classes
< The office class exists separately, without involving any inheritance

< Codes:
class Office {
public:
Office(char *address);
~Office();
const char *getAddress() const;
private:
char *m_address;

I 25-35

delegati(')'r'f- const char* getAddress() const;
const char *getRank() const;
const char* Gm private: g 0
getAddress() const{ ¥ " char *m rank:

return m_office.getAddress(); ; Office m_office;
Y Y
+ Note: the data part m_office in Graduate and Faculty is replicated.
However, the code to handle address is reduced to a single
copy, i.e. Office::getAddress(). If we want to maintain a single
object for the same office, we can use pointer or reference to
implement m_office. 25.36

Further Abstraction

< When the relationships between Graduate or Faculty objects and
other objects are common, we can model their relationships within

a parent class.

7N
|
Undergraduate | PersonnelWithOffice |—| Office
| Graduate l | Faculty |
class PersonnelWithOffice {
public:
const char *getAddress() const; Note: in the above class diagram, each
private: - Graduate object or Faculty object
 Office m_office; has an association with an Office
k object

< If there could be several offices for a certain personnel, the private

member could be a container, ex. vector<Office> m_offices;
25-37

Design Rules for Inheritance

<+ Primary guide: Class A should only be derived from Class B if

Class A is a type ofCIassB‘ Person ‘ ‘ B ‘ Liskov substitution
Principle (LSP)

* A student is a person ISA
| Student | [A | [Thisdefis formal
. . . . but still abstract!!
* Inheritance is called an 1S-A relationship .- pitficult to follow!

* What we mean by “is-a” in programming is “substitutability”.

* Eg. Can an object of type Student be used in whatever place of
an object of type Person? This is described in terms of their
interfaces (the promises and requirements), instead of their
implementations. If yes, Student can inherit Person.

% Inheritance should be “natural” Proper inheritance Improper inheritance

= The second case is a bad inheritance Stuent Underaduate
even if Undergraduate is internally

identical to Student.

25-38

Design Rules (cont’d)

< Common code and data between classes can be shared by creating
a base class (one of the two primary benefits we can get from

inheritance) Person
m_age
m_name
| | |
Undergraduate Graduate Faculty ‘Ay
m advisor m_office m_office 3
= m_stipend m_rank ’ Gradga&(‘ ’\QCUW ‘

<+ Never violate the primary objectives for the sake'@ode sharir@\

< Bad cases of inheritance (improper inheritances) are often cured
through composition (containment / aggregation)

Faculty This is referred to as the HAS-A relationship.
It operates in the form of delegation.
25-39

Dubious Examples of Inheritance

<+ Taken from Deitel & Deitel, C: How to program, p. 736

class Point {
public:
Point(double x=0, double y=0); void Circle::display() {
protected: cout << "Center =" <<c.x<<","<<cy
) double x, y; <<"]; Radius =" << radius;
; }

class Circle: public Point {

public:
Circle(double x=0, double y=0, double radius=0);

void display() const;
private:

double radius;
}.

< Design rationale: A point is a type of circle, with common data, when
the radius of a circle is approaching zero. ... Purely mathematical!

+ Critiques: A circle is not a point. Instead, a circle has a point
corresponding to its center. Substitutability: Can a circle be used
as a point in constructing the four corners of a rectangle? Can a
circle be used as the center of another circle? 25-40

Some Other Dubious Examples

< Ex 1: A stack derived from a linked list What are the problems?

& This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

« |f you try to turn off the insert()/delete() interface that could
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of
operations. Client codes break! A Stack IS-NOT a LinkList.

< Ex 2: A file pathname class derived from a string class
note: a pathname IS indeed implemented by a string, but it is a
special string that cannot be longer than 32 characters
< Design rule: The derived class extends the base class, not the other
way around. specialization

/ base class \ \ E)M;SS /
/ derived class \ \deffvedslass/

25-41

Points to Consider

To design a Shape inheritance hierarchy

&
<%

What are the common operations you want to perform on all Shapes

What other kinds of Shapes might you use in your application?
(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus,
Pentagon, ...) Circle-Ellipse Square-Rectangle

Why do you need a Rectangle class as the base class of a Square?
Can a Square substitute for a Rectangle?

A Rhombus is four-sided, like a Rectangle, so should Rectangle
derive from Rhombus?

Should you have a base class for all four-sided objects?
Should you have another base class for all five-sided objects?

Should you have a general base class for polygons with the number
of sides as an attribute?

Will your program perform geometric searches to identify objects?. 4,

Person
m_age Department
Course m_name
— T .
Student Employee
_home m_office
m_courses m_department
[ZP | | 4 1
Undergraduate | | Graduate Faculty Staff
m_advisor m_stipend m_53|?(fy m_wage
m_tuition m_ran m_job
- ZF Residence
ReS|den(?eManager m_location
m_residences m_phoneExt
— T
CampusResidence Office
m_rent m_|PAddress
m_roomMates

25-43

