
InheritanceInheritance

C++ Obj t O i t d P iC++ Object Oriented Programming
Pei-yih Ting

NTOUCSNTOUCS

25-1

Contents
 Basic Inheritance

 Why inheritance
 How inheritance works

 Protected members
 Constructors and destructors

 Derivation tree
 Function overriding and hiding

l l hi h

 Example class hierarchy

25-2

Contents
 Basic Inheritance

 Why inheritance
 How inheritance works

 I h it D i
 Protected members
 Constructors and destructors

 Inheritance Design
 Exploring different

inheritance structure
 Derivation tree
 Function overriding and hiding

l l hi h

inheritance structure
 Direct solution to reuse code
 Alternative solutions

 Example class hierarchy
 Alternative solutions
 Better design
 Final solutions
 Design rules (IS-A relationship,

Proper inheritance)

25-2

 Dubious designs

Object-Oriented Analysisj y
 An object-orientated design provides a more natural and systematic

framework for specifying and designing a programming solutionframework for specifying and designing a programming solution.

25-3

Object-Oriented Analysisj y
 An object-orientated design provides a more natural and systematic

framework for specifying and designing a programming solutionframework for specifying and designing a programming solution.
 Program designs are almost always based on the program

specification, i.e. a document describing the exact requirements aspecification, i.e. a document describing the exact requirements a
program is expected to achieve.

25-3

Object-Oriented Analysisj y
 An object-orientated design provides a more natural and systematic

framework for specifying and designing a programming solutionframework for specifying and designing a programming solution.
 Program designs are almost always based on the program

specification, i.e. a document describing the exact requirements aspecification, i.e. a document describing the exact requirements a
program is expected to achieve.

 Four phases of the object-oriented analysis process:

25-3

Object-Oriented Analysisj y
 An object-orientated design provides a more natural and systematic

framework for specifying and designing a programming solutionframework for specifying and designing a programming solution.
 Program designs are almost always based on the program

specification, i.e. a document describing the exact requirements aspecification, i.e. a document describing the exact requirements a
program is expected to achieve.

 Four phases of the object-oriented analysis process:
 The identification of objects from the program specification.j p g p

25-3

Object-Oriented Analysisj y
 An object-orientated design provides a more natural and systematic

framework for specifying and designing a programming solutionframework for specifying and designing a programming solution.
 Program designs are almost always based on the program

specification, i.e. a document describing the exact requirements aspecification, i.e. a document describing the exact requirements a
program is expected to achieve.

 Four phases of the object-oriented analysis process:
 The identification of objects from the program specification.j p g p
 The identification of the attributes and behaviours of these objects.

25-3

Object-Oriented Analysisj y
 An object-orientated design provides a more natural and systematic

framework for specifying and designing a programming solutionframework for specifying and designing a programming solution.
 Program designs are almost always based on the program

specification, i.e. a document describing the exact requirements aspecification, i.e. a document describing the exact requirements a
program is expected to achieve.

 Four phases of the object-oriented analysis process:
 The identification of objects from the program specification.j p g p
 The identification of the attributes and behaviours of these objects.
 The identification of any super-classes.y p

25-3

Object-Oriented Analysisj y
 An object-orientated design provides a more natural and systematic

framework for specifying and designing a programming solutionframework for specifying and designing a programming solution.
 Program designs are almost always based on the program

specification, i.e. a document describing the exact requirements aspecification, i.e. a document describing the exact requirements a
program is expected to achieve.

 Four phases of the object-oriented analysis process:
 The identification of objects from the program specification.j p g p
 The identification of the attributes and behaviours of these objects.
 The identification of any super-classes.y p
 The specification of the behaviours of the identified classes.

25-3

Inheritance
 The distinction between an "object-based language" and an "object-

oriented language" is the ability to support inheritance (or derivation).g g y pp ()

25-4

Inheritance
 The distinction between an "object-based language" and an "object-

oriented language" is the ability to support inheritance (or derivation).g g y pp ()
 Composition/aggregation and inheritance are the most important two

ways to construct object hierarchies.y j

25-4

Inheritance
 The distinction between an "object-based language" and an "object-

oriented language" is the ability to support inheritance (or derivation).g g y pp ()
 Composition/aggregation and inheritance are the most important two

ways to construct object hierarchies.y j
 In the OOA process, after objects are identified from the problem

domain and attributes and behaviors are modeled with classes in the
analysis process, the next important phase is the identification of
super-classes in the problem domain

25-4

Inheritance
 The distinction between an "object-based language" and an "object-

oriented language" is the ability to support inheritance (or derivation).g g y pp ()
 Composition/aggregation and inheritance are the most important two

ways to construct object hierarchies.y j
 In the OOA process, after objects are identified from the problem

domain and attributes and behaviors are modeled with classes in the
analysis process, the next important phase is the identification of
super-classes in the problem domain
I h l l l l d fi h ib d In the language level, a super-class defines the attributes and
behaviors that are common to all its sub-classes.

25-4

Inheritance
 The distinction between an "object-based language" and an "object-

oriented language" is the ability to support inheritance (or derivation).g g y pp ()
 Composition/aggregation and inheritance are the most important two

ways to construct object hierarchies.y j
 In the OOA process, after objects are identified from the problem

domain and attributes and behaviors are modeled with classes in the
analysis process, the next important phase is the identification of
super-classes in the problem domain
I h l l l l d fi h ib d In the language level, a super-class defines the attributes and
behaviors that are common to all its sub-classes.

vs.
Base class Derived class

25-4

Inheritance
 The distinction between an "object-based language" and an "object-

oriented language" is the ability to support inheritance (or derivation).g g y pp ()
 Composition/aggregation and inheritance are the most important two

ways to construct object hierarchies.y j
 In the OOA process, after objects are identified from the problem

domain and attributes and behaviors are modeled with classes in the
analysis process, the next important phase is the identification of
super-classes in the problem domain
I h l l l l d fi h ib d In the language level, a super-class defines the attributes and
behaviors that are common to all its sub-classes.

Super-class Sub-classvs.
Base class Derived class

25-4

Inheritance
 The distinction between an "object-based language" and an "object-

oriented language" is the ability to support inheritance (or derivation).g g y pp ()
 Composition/aggregation and inheritance are the most important two

ways to construct object hierarchies.y j
 In the OOA process, after objects are identified from the problem

domain and attributes and behaviors are modeled with classes in the
analysis process, the next important phase is the identification of
super-classes in the problem domain
I h l l l l d fi h ib d In the language level, a super-class defines the attributes and
behaviors that are common to all its sub-classes.

Super-class Sub-classvs.
Base class Derived class

25-4

Child classParent class

Basic InheritanceBasic Inheritance

25-5

The Basic Problem: Extension
 Imagine you have a class for describing students

25-6

The Basic Problem: Extension
 Imagine you have a class for describing students

class Student {class Student {
public:

Student();
~Student();
void setData(char *name, int age);
int getAge() const;int getAge() const;
const char *getName() const;

private:
char *m_name;
int m_age;

};};

25-6

The Basic Problem: Extension
 Imagine you have a class for describing students

class Student {class Student {
public:

Student();
~Student();
void setData(char *name, int age);
int getAge() const;int getAge() const;
const char *getName() const;

private:
char *m_name;
int m_age;

};

W t t dd fi ld t h dl th i t f d t t d t

};

25-6

 Want to add fields to handle the requirements for graduate students

The Basic Problem: Extension
 Imagine you have a class for describing students

class Student { class Student {class Student {
public:

Student();

class Student {
public:

Student();
~Student();~Student();

void setData(char *name, int age);
int getAge() const;

~Student();
void setData(char *name, int age,

int stipend);
i t tA () tint getAge() const;

const char *getName() const;
private:

int getAge() const;
const char *getName() const;
int getStipend() const;

char *m_name;
int m_age;

};

private:
char *m_name;
int m_age;

W t t dd fi ld t h dl th i t f d t t d t

};
int m_stipend;

};

25-6

 Want to add fields to handle the requirements for graduate students

The Basic Problem: Extension
 Imagine you have a class for describing students

class Student { class Student {class Student {
public:

Student();

class Student {
public:

Student();
~Student();~Student();

void setData(char *name, int age);
int getAge() const;

~Student();
void setData(char *name, int age,

int stipend);
i t tA () tint getAge() const;

const char *getName() const;
private:

int getAge() const;
const char *getName() const;
int getStipend() const;

char *m_name;
int m_age;

};

private:
char *m_name;
int m_age;

W t t dd fi ld t h dl th i t f d t t d t

};
int m_stipend;

};

25-6
What is the problem of this design?

 Want to add fields to handle the requirements for graduate students

Not Good!No Good!

25-7

Not Good!No Good!
 In the above design

S d b l l f ib d Student becomes a general purpose class, a set of attributes and
interfaces are used for undergraduate students, while another set
of attributes and interfaces are used for graduate studentsof attributes and interfaces are used for graduate students
… a form with many redundant fields

25-7

Not Good!No Good!
 In the above design

S d b l l f ib d Student becomes a general purpose class, a set of attributes and
interfaces are used for undergraduate students, while another set
of attributes and interfaces are used for graduate studentsof attributes and interfaces are used for graduate students
… a form with many redundant fields

 In the process of this change, all previously developed programs, In the process of this change, all previously developed programs,
including those implementations of the Student class and those
codes that are the client programs of the Student class, have to
be recompiled…. This change is global, not limited to the part
you plan to add.

25-7

Not Good!No Good!
 In the above design

S d b l l f ib d Student becomes a general purpose class, a set of attributes and
interfaces are used for undergraduate students, while another set
of attributes and interfaces are used for graduate studentsof attributes and interfaces are used for graduate students
… a form with many redundant fields

 In the process of this change, all previously developed programs, In the process of this change, all previously developed programs,
including those implementations of the Student class and those
codes that are the client programs of the Student class, have to
be recompiled…. This change is global, not limited to the part
you plan to add.

OCP: open-closed principle

25-7

Not Good!No Good!
 In the above design

S d b l l f ib d Student becomes a general purpose class, a set of attributes and
interfaces are used for undergraduate students, while another set
of attributes and interfaces are used for graduate studentsof attributes and interfaces are used for graduate students
… a form with many redundant fields

 In the process of this change, all previously developed programs, In the process of this change, all previously developed programs,
including those implementations of the Student class and those
codes that are the client programs of the Student class, have to
be recompiled…. This change is global, not limited to the part
you plan to add.

OCP: open-closed principle
Software entities (classes modules functions etc)

25-7

Software entities (classes, modules, functions, etc.)
should be open for extension, but closed for modification.

A Solution – Separate Classesp
 No redundant members, old codes

for Student need only change the

for Student need only change the
name to UnderGraduate.

25-8

A Solution – Separate Classesp
 No redundant members, old codes

for Student need only change the

class Undergraduate {

for Student need only change the
name to UnderGraduate.

public:
Undergraduate();
~Undergraduate();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;

pri ate:private:
char *m_name;
int m_age;

};};

25-8

A Solution – Separate Classesp
class Graduate {
public:

 No redundant members, old codes
for Student need only change the

class Undergraduate {

p
Graduate();
~Graduate();
void setData(char *name,

for Student need only change the
name to UnderGraduate.

public:
Undergraduate();
~Undergraduate();

int age, int stipend);
int getAge() const;
const char *getName() const;
i S i d()void setData(char *name, int age);

int getAge() const;
const char *getName() const;

pri ate:

int getStipend() const;
private:

char *m_name;
int m age;private:

char *m_name;
int m_age;

};

int m_age;
int m_stipend;

};
};

25-8

A Solution – Separate Classesp
class Graduate {
public:

 No redundant members, old codes
for Student need only change the

class Undergraduate {

p
Graduate();
~Graduate();
void setData(char *name,

for Student need only change the
name to UnderGraduate.

public:
Undergraduate();
~Undergraduate();

int age, int stipend);
int getAge() const;
const char *getName() const;
i S i d()void setData(char *name, int age);

int getAge() const;
const char *getName() const;

pri ate:

int getStipend() const;
private:

char *m_name;
int m age;private:

char *m_name;
int m_age;

}; Why is this still a poor solution?

int m_age;
int m_stipend;

};
}; Why is this still a poor solution?

25-8

A Solution – Separate Classesp
class Graduate {
public:

 No redundant members, old codes
for Student need only change the

class Undergraduate {

p
Graduate();
~Graduate();
void setData(char *name,

for Student need only change the
name to UnderGraduate.

public:
Undergraduate();
~Undergraduate();

int age, int stipend);
int getAge() const;
const char *getName() const;
i S i d()void setData(char *name, int age);

int getAge() const;
const char *getName() const;

pri ate:

int getStipend() const;
private:

char *m_name;
int m age;private:

char *m_name;
int m_age;

}; Why is this still a poor solution?

int m_age;
int m_stipend;

};
}; Why is this still a poor solution?

 A client program cannot treat both classes of objects in a uniform way,
ex. The library circulation system wants to check which students are

25-8

ex. The library circulation system wants to check which students are
holding books overdue, it has to handle undergraduate and graduate
students with separate pieces of codes.

A Solution – Separate Classesp
class Graduate {
public:

 No redundant members, old codes
for Student need only change the

class Undergraduate {

p
Graduate();
~Graduate();
void setData(char *name,

for Student need only change the
name to UnderGraduate.

public:
Undergraduate();
~Undergraduate();

int age, int stipend);
int getAge() const;
const char *getName() const;
i S i d()void setData(char *name, int age);

int getAge() const;
const char *getName() const;

pri ate:

int getStipend() const;
private:

char *m_name;
int m age;private:

char *m_name;
int m_age;

}; Why is this still a poor solution?

int m_age;
int m_stipend;

};
}; Why is this still a poor solution?

 A client program cannot treat both classes of objects in a uniform way,
ex. The library circulation system wants to check which students are

25-8

ex. The library circulation system wants to check which students are
holding books overdue, it has to handle undergraduate and graduate
students with separate pieces of codes. Also, a lot of redundancy.

Basic Inheritance in C++
 Declare a class Graduate that is derived from Student

25-9

Basic Inheritance in C++
 Declare a class Graduate that is derived from Student

class Graduate: public Student {class Graduate: public Student {
public:

Graduate(char *name, int age, int stipend);
int getStipend() const;

private:private:
int m_stipend;

};

25-9

Basic Inheritance in C++
 Declare a class Graduate that is derived from Student

class Graduate: public Student {

new member functions

class Graduate: public Student {
public:

Graduate(char *name, int age, int stipend);
int getStipend() const;

private: new member functionsprivate:
int m_stipend;

};

25-9

Basic Inheritance in C++
 Declare a class Graduate that is derived from Student

class Graduate: public Student {

new member functions

class Graduate: public Student {
public:

Graduate(char *name, int age, int stipend);
int getStipend() const;

private:

new data member

new member functionsprivate:
int m_stipend;

};

25-9

Basic Inheritance in C++
 Declare a class Graduate that is derived from Student

Student is called the baseclass Graduate: public Student { Student is called the base
class, Graduate is called
the derived class

new member functions

class Graduate: public Student {
public:

Graduate(char *name, int age, int stipend);
int getStipend() const;

private:

new data member

new member functionsprivate:
int m_stipend;

};

25-9

Basic Inheritance in C++
 Declare a class Graduate that is derived from Student

Student is called the baseclass Graduate: public Student { Student is called the base
class, Graduate is called
the derived class

new member functions

class Graduate: public Student {
public:

Graduate(char *name, int age, int stipend);
int getStipend() const;

private:

new data member

new member functionsprivate:
int m_stipend;

};

 All the data members (m_name and m_age) and most the member
functions (setData(), getAge(), getName()) of class Student are

i ll i h i d b h d lautomatically inherited by the Graduate class

25-9

Basic Inheritance in C++
 Declare a class Graduate that is derived from Student

Student is called the baseclass Graduate: public Student { Student is called the base
class, Graduate is called
the derived class

new member functions

class Graduate: public Student {
public:

Graduate(char *name, int age, int stipend);
int getStipend() const;

private:

new data member

new member functionsprivate:
int m_stipend;

};

 All the data members (m_name and m_age) and most the member
functions (setData(), getAge(), getName()) of class Student are

i ll i h i d b h d lautomatically inherited by the Graduate class
 New member functions

25-9

Basic Inheritance in C++
 Declare a class Graduate that is derived from Student

Student is called the baseclass Graduate: public Student { Student is called the base
class, Graduate is called
the derived class

new member functions

class Graduate: public Student {
public:

Graduate(char *name, int age, int stipend);
int getStipend() const;

private:

new data member

new member functionsprivate:
int m_stipend;

};

 All the data members (m_name and m_age) and most the member
functions (setData(), getAge(), getName()) of class Student are

i ll i h i d b h d lautomatically inherited by the Graduate class
 New member functions

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
setData(name, age); // this is inherited from Student

}

25-9

Basic Inheritance in C++
 Declare a class Graduate that is derived from Student

Student is called the baseclass Graduate: public Student { Student is called the base
class, Graduate is called
the derived class

new member functions

class Graduate: public Student {
public:

Graduate(char *name, int age, int stipend);
int getStipend() const;

private:

new data member

new member functionsprivate:
int m_stipend;

};

 All the data members (m_name and m_age) and most the member
functions (setData(), getAge(), getName()) of class Student are

i ll i h i d b h d lautomatically inherited by the Graduate class
 New member functions

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
setData(name, age); // this is inherited from Student

}

25-9

int Graduate::getStipend() const {
return m_stipend;

}

Basic Inheritance (cont’d)()
 Usages:g

25-10

Basic Inheritance (cont’d)()
 Usages:g

Student student;
student.setData("Mel", 19);
Graduate gradStudent("Ron", 24, 3000);

25-10

Basic Inheritance (cont’d)()
 Usages:g

Student student;
student.setData("Mel", 19);

: Student

Graduate gradStudent("Ron", 24, 3000);

m_name = "Mel"
m_age = 19

: Studentctor(), dtor()
setData()
getAge()
getName()getName()

25-10

Basic Inheritance (cont’d)()
 Usages:g

Student student;
student.setData("Mel", 19);

: Student : Graduatector(), dtor()

Graduate gradStudent("Ron", 24, 3000);

m_name = "Mel"
m_age = 19

: Studentctor(), dtor()
setData()
getAge()
getName()

m_name = "Ron"
m_age = 24

: Student
setData()
getAge()

(), ()
getStipend()

getName()
m_stipend = 3000

getAge()
getName()

25-10

Basic Inheritance (cont’d)()
 Usages:g

Student student;
student.setData("Mel", 19);

: Student : Graduatector(), dtor()

Graduate gradStudent("Ron", 24, 3000);

m_name = "Mel"
m_age = 19

: Studentctor(), dtor()
setData()
getAge()
getName()

m_name = "Ron"
m_age = 24

: Student
setData()
getAge()

(), ()
getStipend()

getName()
m_stipend = 3000

getAge()
getName()

cout << student.getName() << " is " << student.getAge()cout << student.getName() << is << student.getAge()
<< " years old undergraduate student\n";

25-10

Basic Inheritance (cont’d)()
 Usages:g

Student student;
student.setData("Mel", 19);

: Student : Graduatector(), dtor()

Graduate gradStudent("Ron", 24, 3000);

m_name = "Mel"
m_age = 19

: Studentctor(), dtor()
setData()
getAge()
getName()

m_name = "Ron"
m_age = 24

: Student
setData()
getAge()

(), ()
getStipend()

getName()
m_stipend = 3000

getAge()
getName()

cout << student.getName() << " is " << student.getAge()cout << student.getName() << is << student.getAge()
<< " years old undergraduate student\n";

cout << gradStudent.getName() << " is " << gradStudent.getAge()

25-10

g g g g g
<< " years old and has a stipend of " << gradStudent.getStipend()
<< " dollars.\n";

Basic Inheritance (cont’d)()
 Usages:

Note: A Graduate object is a Student object because
a Graduate object provides the complete set of
interface functions of a Student object i e

g
interface functions of a Student object, i.e.,
they looks the same from the outside.Student student;

student.setData("Mel", 19);

: Student : Graduatector(), dtor()

Graduate gradStudent("Ron", 24, 3000);

m_name = "Mel"
m_age = 19

: Studentctor(), dtor()
setData()
getAge()
getName()

m_name = "Ron"
m_age = 24

: Student
setData()
getAge()

(), ()
getStipend()

getName()
m_stipend = 3000

getAge()
getName()

cout << student.getName() << " is " << student.getAge()cout << student.getName() << is << student.getAge()
<< " years old undergraduate student\n";

cout << gradStudent.getName() << " is " << gradStudent.getAge()

25-10

g g g g g
<< " years old and has a stipend of " << gradStudent.getStipend()
<< " dollars.\n";

Basic Inheritance (cont’d)()
 Usages:

Note: A Graduate object is a Student object because
a Graduate object provides the complete set of
interface functions of a Student object i e

g
interface functions of a Student object, i.e.,
they looks the same from the outside.Student student;

student.setData("Mel", 19);
Student

: Student : Graduatector(), dtor()

Graduate gradStudent("Ron", 24, 3000); Graduate

m_name = "Mel"
m_age = 19

: Studentctor(), dtor()
setData()
getAge()
getName()

m_name = "Ron"
m_age = 24

: Student
setData()
getAge()

(), ()
getStipend()

getName()
m_stipend = 3000

getAge()
getName()

cout << student.getName() << " is " << student.getAge()cout << student.getName() << is << student.getAge()
<< " years old undergraduate student\n";

cout << gradStudent.getName() << " is " << gradStudent.getAge()

25-10

g g g g g
<< " years old and has a stipend of " << gradStudent.getStipend()
<< " dollars.\n";

Basic Inheritance (cont’d)()
 This would be illegal

int Graduate::getStipend() const {int Graduate::getStipend() const {
if (m_age > 30)

return 0;
return m_stipend;

}

25-11

Basic Inheritance (cont’d)()
 This would be illegal

int Graduate::getStipend() const {int Graduate::getStipend() const {
if (m_age > 30)

return 0;
return m_stipend;

}

 Private data member of the base class is implicitly declared/defined
b t i till k t i t f it d i d l (th b d f bbut is still kept private from its derived class. (the boundary of base
class is maintained)

25-11

Basic Inheritance (cont’d)()
 This would be illegal

int Graduate::getStipend() const {int Graduate::getStipend() const {
if (m_age > 30)

return 0;
return m_stipend;

}

 Private data member of the base class is implicitly declared/defined
b t i till k t i t f it d i d l (th b d f b

 This is legal

but is still kept private from its derived class. (the boundary of base
class is maintained)

 This is legal
int Graduate::getStipend() const {

if (getAge() > 30)
t 0return 0;

return m_stipend;
}

25-11

Basic Inheritance (cont’d)()
 This would be illegal

int Graduate::getStipend() const {int Graduate::getStipend() const {
if (m_age > 30)

return 0;
return m_stipend;

}

 Private data member of the base class is implicitly declared/defined
b t i till k t i t f it d i d l (th b d f b

 This is legal

but is still kept private from its derived class. (the boundary of base
class is maintained)

 This is legal
int Graduate::getStipend() const {

if (getAge() > 30)
t 0return 0;

return m_stipend;
}

25-11

 Back to OCP:

Basic Inheritance (cont’d)()
 This would be illegal

int Graduate::getStipend() const {int Graduate::getStipend() const {
if (m_age > 30)

return 0;
return m_stipend;

}

 Private data member of the base class is implicitly declared/defined
b t i till k t i t f it d i d l (th b d f b

 This is legal

but is still kept private from its derived class. (the boundary of base
class is maintained)

 This is legal
int Graduate::getStipend() const {

if (getAge() > 30)
t 0return 0;

return m_stipend;
}

25-11

 Back to OCP: Did you extend the functionality of the class Student?

Basic Inheritance (cont’d)()
 This would be illegal

int Graduate::getStipend() const {int Graduate::getStipend() const {
if (m_age > 30)

return 0;
return m_stipend;

}

 Private data member of the base class is implicitly declared/defined
b t i till k t i t f it d i d l (th b d f b

 This is legal

but is still kept private from its derived class. (the boundary of base
class is maintained)

 This is legal
int Graduate::getStipend() const {

if (getAge() > 30)
t 0return 0;

return m_stipend;
}

25-11

 Back to OCP: Did you extend the functionality of the class Student?
Did you edit student.h or student.cpp?

Protected Data and Functions
 Can we give the derived class access to "private" data of base class?

25-12

Protected Data and Functions
 Can we give the derived class access to "private" data of base class?

class Student {class Student {
public:

Student();
~Student();~Student();
void setData(char *name, int
age);
int getAge() const;g g () ;
const char *getName() const;

protected:
char *m name;char m_name;
int m_age;

};

25-12

Protected Data and Functions
 Can we give the derived class access to "private" data of base class?

class Student {class Student {
public:

Student();
~Student();~Student();
void setData(char *name, int
age);
int getAge() const;

 The following is now legal
int Graduate::getStipend() const {g g () ;

const char *getName() const;
protected:

char *m name;

g p () {
if (m_age > 30)

return 0;
return m_stipend;char m_name;

int m_age;
};

}

25-12

Protected Data and Functions
 Can we give the derived class access to "private" data of base class?

class Student {class Student {
public:

Student();
~Student();~Student();
void setData(char *name, int
age);
int getAge() const;

 The following is now legal
int Graduate::getStipend() const {g g () ;

const char *getName() const;
protected:

char *m name;

g p () {
if (m_age > 30)

return 0;
return m_stipend;char m_name;

int m_age;
};

}

 Who can access protected fields?

25-12

Protected Data and Functions
 Can we give the derived class access to "private" data of base class?

class Student {class Student {
public:

Student();
~Student();~Student();
void setData(char *name, int
age);
int getAge() const;

 The following is now legal
int Graduate::getStipend() const {g g () ;

const char *getName() const;
protected:

char *m name;

g p () {
if (m_age > 30)

return 0;
return m_stipend;char m_name;

int m_age;
};

}

 Who can access protected fields?
 base class and friends of base class

25-12

Protected Data and Functions
 Can we give the derived class access to "private" data of base class?

class Student {class Student {
public:

Student();
~Student();~Student();
void setData(char *name, int
age);
int getAge() const;

 The following is now legal
int Graduate::getStipend() const {g g () ;

const char *getName() const;
protected:

char *m name;

g p () {
if (m_age > 30)

return 0;
return m_stipend;char m_name;

int m_age;
};

}

 Who can access protected fields?
 base class and friends of base class

25-12

 derived class and friends of derived
classes

Protected Data and Functions
 Can we give the derived class access to "private" data of base class?

class Student {class Student {
public:

Student();
~Student();~Student();
void setData(char *name, int
age);
int getAge() const;

 The following is now legal
int Graduate::getStipend() const {g g () ;

const char *getName() const;
protected:

char *m name;

g p () {
if (m_age > 30)

return 0;
return m_stipend;

Note: the encapsulation

char m_name;
int m_age;

};
}

Note: the encapsulation
perimeter is enlarged
a great deal with
"protected" in your

 Who can access protected fields?
 base class and friends of base class

25-12

protected in your
design derived class and friends of derived

classes

Basic Inheritance (cont’d)()
 Most of the member functions of the base class are implicitly

inherited by the derived class except

25-13

Basic Inheritance (cont’d)()
 Most of the member functions of the base class are implicitly

inherited by the derived class except
 The constructor (including copy ctor)

25-13

Basic Inheritance (cont’d)()
 Most of the member functions of the base class are implicitly

inherited by the derived class except
 The constructor (including copy ctor)
 The assignment operator

25-13

Basic Inheritance (cont’d)()
 Most of the member functions of the base class are implicitly

inherited by the derived class except
 The constructor (including copy ctor)
 The assignment operator
 The destructor

25-13

Basic Inheritance (cont’d)()
 Most of the member functions of the base class are implicitly

inherited by the derived class except
 The constructor (including copy ctor)
 The assignment operator
 The destructor

 They are synthesized by the complier again if not explicitly defined.
The synthesized ctor, dtor, and assignment operator would chain
automatically to the function defined in the base class.

25-13

Inheritance and Constructors
 Rewrite Student using constructor

25-14

Inheritance and Constructors
 Rewrite Student using constructor

class Student {
blipublic:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
i t tA () tint getAge() const;
const char *getName() const;

private:
char *m_name;
int m_age;

};

25-14

Inheritance and Constructors
 Rewrite Student using constructor

class Student {
blipublic:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
i t tA () tint getAge() const;
const char *getName() const;

private:
char *m_name;

 In this case, the constructor for Graduate fails

int m_age;
};

25-14

Inheritance and Constructors
 Rewrite Student using constructor

class Student {
blipublic:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
i t tA () tint getAge() const;
const char *getName() const;

private:
char *m_name;

 In this case, the constructor for Graduate fails

int m_age;
};

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
setData(name, age); // this is inherited from Student

}

25-14

Inheritance and Constructors
 Rewrite Student using constructor

class Student {
blipublic:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
i t tA () tint getAge() const;
const char *getName() const;

private:
char *m_name;

 In this case, the constructor for Graduate fails

int m_age;
};

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
setData(name, age); // this is inherited from Student

}
error C2512: 'Student' : no appropriate default constructor availableerror C2512: Student : no appropriate default constructor available

25-14

Inheritance and Constructors
 Rewrite Student using constructor

class Student {
blipublic:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
i t tA () tint getAge() const;
const char *getName() const;

private:
char *m_name;

 In this case, the constructor for Graduate fails

int m_age;
};

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
setData(name, age); // this is inherited from Student

}
error C2512: 'Student' : no appropriate default constructor availableerror C2512: Student : no appropriate default constructor available

 Why??

25-14

Inheritance and Constructors
 Rewrite Student using constructor

class Student {
blipublic:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
i t tA () tint getAge() const;
const char *getName() const;

private:
char *m_name;

 In this case, the constructor for Graduate fails

int m_age;
};

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
setData(name, age); // this is inherited from Student

}
error C2512: 'Student' : no appropriate default constructor available

Graduate::Graduate(char *name, int age, int stipend)
St d t() ti d(ti d) {

error C2512: Student : no appropriate default constructor available
 Why??

25-14

: Student(), m_stipend(stipend) {
setData(name, age); // this is inherited from Student

}

Inheritance and Constructors
 Rewrite Student using constructor

class Student {
blipublic:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
i t tA () tint getAge() const;
const char *getName() const;

private:
char *m_name;

 In this case, the constructor for Graduate fails

int m_age;
};

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
setData(name, age); // this is inherited from Student

}
error C2512: 'Student' : no appropriate default constructor available

Graduate::Graduate(char *name, int age, int stipend)
St d t() ti d(ti d) {

error C2512: Student : no appropriate default constructor available
 Why??

25-14
Compiler insert this automatically

: Student(), m_stipend(stipend) {
setData(name, age); // this is inherited from Student

}

Inheritance and Constructors
 Rewrite Student using constructor

class Student {
blipublic:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
i t tA () tint getAge() const;
const char *getName() const;

private:
char *m_name;

 In this case, the constructor for Graduate fails

int m_age;
};

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
setData(name, age); // this is inherited from Student

}
error C2512: 'Student' : no appropriate default constructor available

chainingGraduate::Graduate(char *name, int age, int stipend)
St d t() ti d(ti d) {

error C2512: Student : no appropriate default constructor available
 Why??

25-14
Compiler insert this automatically

: Student(), m_stipend(stipend) {
setData(name, age); // this is inherited from Student

}

Inheritance and Ctors (cont’d)()
 In this case, the correct form of the constructor for Graduate is

25-15

Inheritance and Ctors (cont’d)()
 In this case, the correct form of the constructor for Graduate is

Graduate::Graduate(char *name int age int stipend)Graduate::Graduate(char name, int age, int stipend)
: Student(name, age), m_stipend(stipend) {

setData(name, age); // setData() is inherited from Student
}

25-15

Inheritance and Ctors (cont’d)()
 In this case, the correct form of the constructor for Graduate is

Graduate::Graduate(char *name int age int stipend)Graduate::Graduate(char name, int age, int stipend)
: Student(name, age), m_stipend(stipend) {

setData(name, age); // setData() is inherited from Student
}

25-15

Inheritance and Ctors (cont’d)()
 In this case, the correct form of the constructor for Graduate is

Graduate::Graduate(char *name int age int stipend)Graduate::Graduate(char name, int age, int stipend)
: Student(name, age), m_stipend(stipend) {

setData(name, age); // setData() is inherited from Student
}

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

}}

25-15

Inheritance and Ctors (cont’d)()
 In this case, the correct form of the constructor for Graduate is

Graduate::Graduate(char *name int age int stipend)Graduate::Graduate(char name, int age, int stipend)
: Student(name, age), m_stipend(stipend) {

setData(name, age); // setData() is inherited from Student
}

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

}}

 You cannot initialize base class members directly in the initialization
list even if they are public or protected, i.e.list even if they are public or protected, i.e.

25-15

Inheritance and Ctors (cont’d)()
 In this case, the correct form of the constructor for Graduate is

Graduate::Graduate(char *name int age int stipend)Graduate::Graduate(char name, int age, int stipend)
: Student(name, age), m_stipend(stipend) {

setData(name, age); // setData() is inherited from Student
}

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

}}

 You cannot initialize base class members directly in the initialization
list even if they are public or protected, i.e.list even if they are public or protected, i.e.

Graduate::Graduate(char *name, int age, int stipend)
: m_age(age), m_stipend(stipend)

25-15

Inheritance and Ctors (cont’d)()
 In this case, the correct form of the constructor for Graduate is

Graduate::Graduate(char *name int age int stipend)Graduate::Graduate(char name, int age, int stipend)
: Student(name, age), m_stipend(stipend) {

setData(name, age); // setData() is inherited from Student
}

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

}}

 You cannot initialize base class members directly in the initialization
list even if they are public or protected, i.e.list even if they are public or protected, i.e.

Graduate::Graduate(char *name, int age, int stipend)
: m_age(age), m_stipend(stipend)

error C2614: 'Graduate' : illegal member initialization: 'm_age' is not a base
or member

25-15

Inheritance and Ctors (cont’d)()
 In this case, the correct form of the constructor for Graduate is

Graduate::Graduate(char *name int age int stipend)Graduate::Graduate(char name, int age, int stipend)
: Student(name, age), m_stipend(stipend) {

setData(name, age); // setData() is inherited from Student
}

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

}}

 You cannot initialize base class members directly in the initialization
list even if they are public or protected, i.e.list even if they are public or protected, i.e.

Graduate::Graduate(char *name, int age, int stipend)
: m_age(age), m_stipend(stipend)

 Base class guarantee
error C2614: 'Graduate' : illegal member initialization: 'm_age' is not a base

or member

25-15

The base class will be fully constructed before the body of the
derived class constructor is entered

Copy Constructorpy
 Copy constructor is also a constructor. Member objects and base

class must be initialized through initialization listclass must be initialized through initialization list

25-16

Copy Constructorpy
 Copy constructor is also a constructor. Member objects and base

class must be initialized through initialization listclass must be initialized through initialization list

 For example:

25-16

Copy Constructorpy
 Copy constructor is also a constructor. Member objects and base

class must be initialized through initialization listclass must be initialized through initialization list

 For example:
class Derived: public Base {
public:

…
Derived(Derived &src);
…

private:
Component m obj;p _ j;

};

25-16

Copy Constructorpy
 Copy constructor is also a constructor. Member objects and base

class must be initialized through initialization listclass must be initialized through initialization list

 For example:
class Derived: public Base {
public:

…
Derived(Derived &src);
…

private:
Component m obj;p _ j;

};
Derived::Derived(Derived &src): Base(src), m_obj(src.m_obj) {

25-16

…
}

Copy Constructorpy
 Copy constructor is also a constructor. Member objects and base

class must be initialized through initialization listclass must be initialized through initialization list

 For example:
class Derived: public Base {
public:

…
Derived(Derived &src);
…

private:
Component m obj;p _ j;

};
Derived::Derived(Derived &src): Base(src), m_obj(src.m_obj) {

25-16

If you do not define a copy ctor, the compiler
would generate one exactly like this.

…
}

Copy Constructorpy
 Copy constructor is also a constructor. Member objects and base

class must be initialized through initialization listclass must be initialized through initialization list

 For example:

Note:

class Derived: public Base {
public:

Note:
Derived::Derived(Derived &src):

m_obj(src.m_obj)
{

…
Derived(Derived &src);

{
…

}

…
private:

Component m obj;p _ j;
};
Derived::Derived(Derived &src): Base(src), m_obj(src.m_obj) {

25-16

If you do not define a copy ctor, the compiler
would generate one exactly like this.

…
}

Copy Constructorpy
 Copy constructor is also a constructor. Member objects and base

class must be initialized through initialization listclass must be initialized through initialization list

Compiler adds Base() invocation For example:

Note:

p ()
automaticallyclass Derived: public Base {

public:
Note:

Derived::Derived(Derived &src):
m_obj(src.m_obj)

{

…
Derived(Derived &src);

{
…

}

…
private:

Component m obj;p _ j;
};
Derived::Derived(Derived &src): Base(src), m_obj(src.m_obj) {

25-16

If you do not define a copy ctor, the compiler
would generate one exactly like this.

…
}

Inheritance and Destructors
 If we add a dynamically allocated string data member to Graduate to

store the student's home address then Graduate requires a destructorstore the student s home address, then Graduate requires a destructor

25-17

Inheritance and Destructors
 If we add a dynamically allocated string data member to Graduate to

store the student's home address then Graduate requires a destructorstore the student s home address, then Graduate requires a destructor
Student::Student(char *name, int age) : m_age(age) {

m name = new char[strlen(name)+1];_ [()];
strcpy(m_name, name);
cout << "In Student ctor\n";

}}

25-17

Inheritance and Destructors
 If we add a dynamically allocated string data member to Graduate to

store the student's home address then Graduate requires a destructorstore the student s home address, then Graduate requires a destructor
Student::Student(char *name, int age) : m_age(age) {

m name = new char[strlen(name)+1];_ [()];
strcpy(m_name, name);
cout << "In Student ctor\n";

}

Student::~Student() {
delete[] m_name;

t "I St d t dt \ "} cout << "In Student dtor\n";
}

25-17

Inheritance and Destructors
 If we add a dynamically allocated string data member to Graduate to

store the student's home address then Graduate requires a destructorstore the student s home address, then Graduate requires a destructor
Student::Student(char *name, int age) : m_age(age) {

m name = new char[strlen(name)+1];_ [()];
strcpy(m_name, name);
cout << "In Student ctor\n";

}

Student::~Student() {
delete[] m_name;

t "I St d t dt \ "} cout << "In Student dtor\n";
}

Graduate::Graduate(char *name, int age, int stipend, char *address)
: Student(name, age), m_stipend(stipend) {
m_address = new char[strlen(address)+1];_
strcpy(m_address, address);
cout << "In Graduate ctor\n";

}

25-17

}

Inheritance and Destructors
 If we add a dynamically allocated string data member to Graduate to

store the student's home address then Graduate requires a destructorstore the student s home address, then Graduate requires a destructor
Student::Student(char *name, int age) : m_age(age) {

m name = new char[strlen(name)+1];_ [()];
strcpy(m_name, name);
cout << "In Student ctor\n";

}

Student::~Student() {
delete[] m_name;

t "I St d t dt \ "} cout << "In Student dtor\n";
}

Graduate::Graduate(char *name, int age, int stipend, char *address)
: Student(name, age), m_stipend(stipend) {
m_address = new char[strlen(address)+1];

Graduate::~Graduate() {
delete[] m address;

_
strcpy(m_address, address);
cout << "In Graduate ctor\n";

}

25-17

delete[] m_address;
cout << "In Graduate dtor\n";

}

}

Inheritance and Dtors (cont’d)()
 What happens in main()

25-18

Inheritance and Dtors (cont’d)()
 What happens in main()

void main() {void main() {
Graduate student("Michael", 24, 6000, " 8899 Storkes Rd.");
cout << student.getName() << " is " << student.getAge() << " years old and "

<< "has a stipend of " <, student.getStipend() << "dollars.\n"
<< "His address is " << student.getAddress() << "\n";

}

25-18

Inheritance and Dtors (cont’d)()
 What happens in main()

void main() {void main() {
Graduate student("Michael", 24, 6000, " 8899 Storkes Rd.");
cout << student.getName() << " is " << student.getAge() << " years old and "

<< "has a stipend of " <, student.getStipend() << "dollars.\n"
<< "His address is " << student.getAddress() << "\n";

}
The output is:

25-18

Inheritance and Dtors (cont’d)()
 What happens in main()

void main() {void main() {
Graduate student("Michael", 24, 6000, " 8899 Storkes Rd.");
cout << student.getName() << " is " << student.getAge() << " years old and "

<< "has a stipend of " <, student.getStipend() << "dollars.\n"
<< "His address is " << student.getAddress() << "\n";

}
The output is:
In Student ctor

25-18

Inheritance and Dtors (cont’d)()
 What happens in main()

void main() {void main() {
Graduate student("Michael", 24, 6000, " 8899 Storkes Rd.");
cout << student.getName() << " is " << student.getAge() << " years old and "

<< "has a stipend of " <, student.getStipend() << "dollars.\n"
<< "His address is " << student.getAddress() << "\n";

}
The output is:
In Student ctor
In Graduate ctor

25-18

Inheritance and Dtors (cont’d)()
 What happens in main()

void main() {void main() {
Graduate student("Michael", 24, 6000, " 8899 Storkes Rd.");
cout << student.getName() << " is " << student.getAge() << " years old and "

<< "has a stipend of " <, student.getStipend() << "dollars.\n"
<< "His address is " << student.getAddress() << "\n";

}
The output is:
In Student ctor
In Graduate ctor
Michael is 24 years old and has a stipend of 6000 dollars.

25-18

Inheritance and Dtors (cont’d)()
 What happens in main()

void main() {void main() {
Graduate student("Michael", 24, 6000, " 8899 Storkes Rd.");
cout << student.getName() << " is " << student.getAge() << " years old and "

<< "has a stipend of " <, student.getStipend() << "dollars.\n"
<< "His address is " << student.getAddress() << "\n";

}
The output is:
In Student ctor
In Graduate ctor
Michael is 24 years old and has a stipend of 6000 dollars.
His address is 8899 Storkes RdHis address is 8899 Storkes Rd.

25-18

Inheritance and Dtors (cont’d)()
 What happens in main()

void main() {void main() {
Graduate student("Michael", 24, 6000, " 8899 Storkes Rd.");
cout << student.getName() << " is " << student.getAge() << " years old and "

<< "has a stipend of " <, student.getStipend() << "dollars.\n"
<< "His address is " << student.getAddress() << "\n";

}
The output is:
In Student ctor
In Graduate ctor
Michael is 24 years old and has a stipend of 6000 dollars.
His address is 8899 Storkes RdHis address is 8899 Storkes Rd.
In Graduate dtor

25-18

Inheritance and Dtors (cont’d)()
 What happens in main()

void main() {void main() {
Graduate student("Michael", 24, 6000, " 8899 Storkes Rd.");
cout << student.getName() << " is " << student.getAge() << " years old and "

<< "has a stipend of " <, student.getStipend() << "dollars.\n"
<< "His address is " << student.getAddress() << "\n";

}
The output is:
In Student ctor
In Graduate ctor
Michael is 24 years old and has a stipend of 6000 dollars.
His address is 8899 Storkes Rd

chaining
His address is 8899 Storkes Rd.
In Graduate dtor
In Student dtor

25-18

Inheritance and Dtors (cont’d)()
 What happens in main()

void main() {void main() {
Graduate student("Michael", 24, 6000, " 8899 Storkes Rd.");
cout << student.getName() << " is " << student.getAge() << " years old and "

<< "has a stipend of " <, student.getStipend() << "dollars.\n"
<< "His address is " << student.getAddress() << "\n";

}
The output is:
In Student ctor
In Graduate ctor
Michael is 24 years old and has a stipend of 6000 dollars.
His address is 8899 Storkes Rd

chaining
His address is 8899 Storkes Rd.
In Graduate dtor
In Student dtor

 The compiler automatically calls each dtor when the object dies.

25-18

Inheritance and Dtors (cont’d)()
 What happens in main()

void main() {void main() {
Graduate student("Michael", 24, 6000, " 8899 Storkes Rd.");
cout << student.getName() << " is " << student.getAge() << " years old and "

<< "has a stipend of " <, student.getStipend() << "dollars.\n"
<< "His address is " << student.getAddress() << "\n";

}
The output is:
In Student ctor
In Graduate ctor
Michael is 24 years old and has a stipend of 6000 dollars.
His address is 8899 Storkes Rd

chaining
His address is 8899 Storkes Rd.
In Graduate dtor
In Student dtor

 The dtors are invoked in the opposite order of the ctors
 The compiler automatically calls each dtor when the object dies.

25-18

Inheritance and Dtors (cont’d)()
 What happens in main()

void main() {void main() {
Graduate student("Michael", 24, 6000, " 8899 Storkes Rd.");
cout << student.getName() << " is " << student.getAge() << " years old and "

<< "has a stipend of " <, student.getStipend() << "dollars.\n"
<< "His address is " << student.getAddress() << "\n";

}
The output is:
In Student ctor
In Graduate ctor
Michael is 24 years old and has a stipend of 6000 dollars.
His address is 8899 Storkes Rd

chaining
His address is 8899 Storkes Rd.
In Graduate dtor
In Student dtor

 The dtors are invoked in the opposite order of the ctors
I d i h d i d bj h b bj i ill i d

 The compiler automatically calls each dtor when the object dies.

25-18

 In destructing the derived object, the base object is still in scope and
functioning correctly.

Chaining of Assignment Operatorg g p
 By default, the compiler adds a “bit-wise copy” assignment operator

for every class which you do not define an assignment operatorfor every class which you do not define an assignment operator

25-19

Chaining of Assignment Operatorg g p
 By default, the compiler adds a “bit-wise copy” assignment operator

for every class which you do not define an assignment operatorfor every class which you do not define an assignment operator
Base If you have a class hierarchy where a class Derived

inherits from a class Base. There are 4 possibilities in
Derived

p
defining their assignment operators:

25-19

Chaining of Assignment Operatorg g p
 By default, the compiler adds a “bit-wise copy” assignment operator

for every class which you do not define an assignment operatorfor every class which you do not define an assignment operator
Base If you have a class hierarchy where a class Derived

inherits from a class Base. There are 4 possibilities in
Derived

p
defining their assignment operators:

1. If both classes do not have assignment operator: both are bit-wise copy

25-19

Chaining of Assignment Operatorg g p
 By default, the compiler adds a “bit-wise copy” assignment operator

for every class which you do not define an assignment operatorfor every class which you do not define an assignment operator
Base If you have a class hierarchy where a class Derived

inherits from a class Base. There are 4 possibilities in
Derived

p
defining their assignment operators:

1. If both classes do not have assignment operator: both are bit-wise copy
2. If you define Base& Base::operator=(Base &) but not

Derived& Derived::operator=(Derived &), then compiler synthesizes

25-19

Chaining of Assignment Operatorg g p
 By default, the compiler adds a “bit-wise copy” assignment operator

for every class which you do not define an assignment operatorfor every class which you do not define an assignment operator
Base If you have a class hierarchy where a class Derived

inherits from a class Base. There are 4 possibilities in
Derived

p
defining their assignment operators:

1. If both classes do not have assignment operator: both are bit-wise copy
2. If you define Base& Base::operator=(Base &) but not

Derived& Derived::operator=(Derived &), then compiler synthesizes
Derived& Derived::operator=(Derived &rhs) {Derived& Derived::operator=(Derived &rhs) {

Base::operator=(rhs); // calling your function
….

t *thireturn *this;
}

25-19

Chaining of Assignment Operatorg g p
 By default, the compiler adds a “bit-wise copy” assignment operator

for every class which you do not define an assignment operatorfor every class which you do not define an assignment operator
Base If you have a class hierarchy where a class Derived

inherits from a class Base. There are 4 possibilities in
Derived

p
defining their assignment operators:

1. If both classes do not have assignment operator: both are bit-wise copy
2. If you define Base& Base::operator=(Base &) but not

Derived& Derived::operator=(Derived &), then compiler synthesizes
Derived& Derived::operator=(Derived &rhs) {Derived& Derived::operator=(Derived &rhs) {

Base::operator=(rhs); // calling your function
….

t *thi

3&4. If you define Derived& Derived::operator=(Derived &rhs) yourself, you have

return *this;
}

25-19

3&4. If you define Derived& Derived::operator (Derived &rhs) yourself, you have
to call Base::operator=(rhs); in Derived::operator=(Derived) no matter it is
synthesized or not; otherwise the Base part of the object would not be copied.

Chaining of Assignment Operatorg g p
 By default, the compiler adds a “bit-wise copy” assignment operator

for every class which you do not define an assignment operatorfor every class which you do not define an assignment operator
Base If you have a class hierarchy where a class Derived

inherits from a class Base. There are 4 possibilities in
Derived

p
defining their assignment operators:

1. If both classes do not have assignment operator: both are bit-wise copy
2. If you define Base& Base::operator=(Base &) but not

Derived& Derived::operator=(Derived &), then compiler synthesizes
Derived& Derived::operator=(Derived &rhs) {Derived& Derived::operator=(Derived &rhs) {

Base::operator=(rhs); // calling your function
….

t *thi

3&4. If you define Derived& Derived::operator=(Derived &rhs) yourself, you have

return *this;
}

25-19

3&4. If you define Derived& Derived::operator (Derived &rhs) yourself, you have
to call Base::operator=(rhs); in Derived::operator=(Derived) no matter it is
synthesized or not; otherwise the Base part of the object would not be copied.

Layers of Inheritancey
 Let us add a new type of graduate student

25-20

Layers of Inheritancey
 Let us add a new type of graduate student

l St d t {class Student {
public:

Student(char *name, int age);
~Student();Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;
iprivate:
char *m_name;
int m_age;

};};

25-20

Layers of Inheritancey
 Let us add a new type of graduate student

l St d t {class Student {
public:

Student(char *name, int age);
~Student();Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;
iprivate:
char *m_name;
int m_age;

};

class Graduate: public Student {
public:

};

public:
Graduate(char *name, int age, int stipend);
int getStipend() const;

private:

25-20

int m_stipend;
};

Layers of Inheritancey
 Let us add a new type of graduate student

class ForeignGraduate: public Graduate {l St d t { g p {
public:

ForeignGraduate(char *name, int age,
int stipend,

class Student {
public:

Student(char *name, int age);
~Student(); p ,

char *nationality);
~ForeignGraduate()
const char *getNationality();

Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;
i private:

char *m_nationality;
};

private:
char *m_name;
int m_age;

};

class Graduate: public Student {
public:

};

public:
Graduate(char *name, int age, int stipend);
int getStipend() const;

private:

25-20

int m_stipend;
};

Layers of Inheritance (cont’d)y ()

St d tStudent

25-21

Layers of Inheritance (cont’d)y ()

St d tStudent::Student(char *name, int age) : m age(age) {
 ctor of Student

Student(, g) _ g (g) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

}

25-21

Layers of Inheritance (cont’d)y ()

St d tStudent::Student(char *name, int age) : m age(age) {
 ctor of Student

Student

G d t

direct base class

(, g) _ g (g) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

}
Graduate

25-21

Layers of Inheritance (cont’d)y ()

St d tStudent::Student(char *name, int age) : m age(age) {
 ctor of Student

Student

G d t

direct base class

(, g) _ g (g) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

}
Graduate

Graduate::Graduate(char *name int age int stipend)
 ctor of Graduate invokes the ctor of its direct base class - Student

Graduate::Graduate(char *name, int age, int stipend)
: Student(name, age), m_stipend(stipend) {

}

25-21

Layers of Inheritance (cont’d)y ()

St d tStudent::Student(char *name, int age) : m age(age) {
 ctor of Student

Student

G d t

direct base class

(, g) _ g (g) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

}
Graduate

F i G d

direct base class

ForeignGraduate

Graduate::Graduate(char *name int age int stipend)
 ctor of Graduate invokes the ctor of its direct base class - Student

Graduate::Graduate(char *name, int age, int stipend)
: Student(name, age), m_stipend(stipend) {

}

25-21

Layers of Inheritance (cont’d)y ()

St d tStudent::Student(char *name, int age) : m age(age) {
 ctor of Student

Student

G d t

direct base class

(, g) _ g (g) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

}
Graduate

F i G d

direct base class

ForeignGraduate

Graduate::Graduate(char *name int age int stipend)
 ctor of Graduate invokes the ctor of its direct base class - Student

Graduate::Graduate(char *name, int age, int stipend)
: Student(name, age), m_stipend(stipend) {

}

 ctor of ForeignGraduate invokes the ctor of its direct base class Graduate
ForeignGraduate::ForeignGraduate(char *name,

int age, int stipend, char *nationality)
: Graduate(name, age, stipend) {

 ctor of ForeignGraduate invokes the ctor of its direct base class - Graduate

25-21

: Graduate(name, age, stipend) {
m_nationality = new char[strlen(nationality)+1];
strcpy(m_nationality, nationality);

}

Layers of Inheritance (cont’d)y ()

St d tStudent::Student(char *name, int age) : m age(age) {
 ctor of Student

Student

G d t

direct base class

Indirect base class

(, g) _ g (g) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

}
Graduate

F i G d

direct base class

Indirect base class

ForeignGraduate

Graduate::Graduate(char *name int age int stipend)
 ctor of Graduate invokes the ctor of its direct base class - Student

Graduate::Graduate(char *name, int age, int stipend)
: Student(name, age), m_stipend(stipend) {

}

 ctor of ForeignGraduate invokes the ctor of its direct base class Graduate
ForeignGraduate::ForeignGraduate(char *name,

int age, int stipend, char *nationality)
: Graduate(name, age, stipend) {

 ctor of ForeignGraduate invokes the ctor of its direct base class - Graduate

25-21

: Graduate(name, age, stipend) {
m_nationality = new char[strlen(nationality)+1];
strcpy(m_nationality, nationality);

}

Behavior Changing (Hiding)g g (g)
 In the previous example, suppose we would like to have a display()

member function in the Student class that shows the details of a
Student object on the screen, ex.

25-22

Behavior Changing (Hiding)g g (g)
 In the previous example, suppose we would like to have a display()

member function in the Student class that shows the details of a
Student object on the screen, ex.

void Student::display() const {
co t << m name << " is " << m age << " ears old \n";cout << m_name << " is " << m_age << "years old.\n";

}

25-22

Behavior Changing (Hiding)g g (g)
 In the previous example, suppose we would like to have a display()

member function in the Student class that shows the details of a
Student object on the screen, ex.

void Student::display() const {
co t << m name << " is " << m age << " ears old \n";cout << m_name << " is " << m_age << "years old.\n";

}

 The Graduate class automatically inherits this member function.
However, the output of this function for a Graduate object is in a
way short of many important data.

25-22

Behavior Changing (Hiding)g g (g)
 In the previous example, suppose we would like to have a display()

member function in the Student class that shows the details of a
Student object on the screen, ex.

void Student::display() const {
co t << m name << " is " << m age << " ears old \n";cout << m_name << " is " << m_age << "years old.\n";

}

 The Graduate class automatically inherits this member function.
However, the output of this function for a Graduate object is in a
way short of many important data.

 We would like to redefine this function in the derived class –
Graduate, such that it will show the stipend and address together.

25-22

Behavior Changing (Hiding)g g (g)
 In the previous example, suppose we would like to have a display()

member function in the Student class that shows the details of a
Student object on the screen, ex.

void Student::display() const {
co t << m name << " is " << m age << " ears old \n";cout << m_name << " is " << m_age << "years old.\n";

}

 The Graduate class automatically inherits this member function.
However, the output of this function for a Graduate object is in a
way short of many important data.

 We would like to redefine this function in the derived class –
Graduate, such that it will show the stipend and address together.

id G d t di l () t { // k th i h it d i f di l ()void Graduate::display() const { // masks the inherited version of display()
cout << getName() << " is " << getAge() << " years old.\n";
cout << "He has a stipend of " << m_stipend << " dollars.\n";
cout << "His address is " << m address << ".\n";

25-22

cout << His address is << m_address << .\n ;
}

Behavior Changing (Hiding)g g (g)
 In the previous example, suppose we would like to have a display()

member function in the Student class that shows the details of a
Student object on the screen, ex.

void Student::display() const {
co t << m name << " is " << m age << " ears old \n";cout << m_name << " is " << m_age << "years old.\n";

}

 The Graduate class automatically inherits this member function.
However, the output of this function for a Graduate object is in a
way short of many important data.

 We would like to redefine this function in the derived class –
Graduate, such that it will show the stipend and address together.

id G d t di l () t { // k th i h it d i f di l ()void Graduate::display() const { // masks the inherited version of display()
cout << getName() << " is " << getAge() << " years old.\n";
cout << "He has a stipend of " << m_stipend << " dollars.\n";
cout << "His address is " << m address << ".\n";

25-22
 Note: function signature is exactly the same as in the base class.

cout << His address is << m_address << .\n ;
}

Behavior Changing (cont’d)g g ()
 Example usage of the previous design:

25-23

Behavior Changing (cont’d)g g ()
 Example usage of the previous design:

S d
m_name = "Mel"
m_age = 19

: Studentctor(), dtor()
getAge()
getName()g ()
display()

25-23

Behavior Changing (cont’d)g g ()
 Example usage of the previous design:

S d
m_name = "Mel"
m_age = 19

: Studentctor(), dtor()
getAge()
getName()g ()
display()

: Graduate

25-23

Behavior Changing (cont’d)g g ()
 Example usage of the previous design:

S d
m_name = "Mel"
m_age = 19

: Studentctor(), dtor()
getAge()
getName()g ()
display()

: Graduate

m_name = "Ron"
m age = 24

: Student
getAge()

N ()
m_stipend = 3000
m_age 24getName()

display()

25-23

Behavior Changing (cont’d)g g ()
 Example usage of the previous design:

S d
m_name = "Mel"
m_age = 19

: Studentctor(), dtor()
getAge()
getName()g ()
display()

: Graduatector(), dtor()
getStipend()

m_name = "Ron"
m age = 24

: Student
getAge()

N ()

getStipend()
display()

m_stipend = 3000
m_age 24getName()

display()

25-23

Behavior Changing (cont’d)g g ()
 Example usage of the previous design:

St d t t d t1("Ali " 20)

S d

Student student1("Alice", 20);
Graduate student2("Michael", 24, 6000, "8899 Storkes Rd.");

m_name = "Mel"
m_age = 19

: Studentctor(), dtor()
getAge()
getName()g ()
display()

: Graduatector(), dtor()
getStipend()

m_name = "Ron"
m age = 24

: Student
getAge()

N ()

getStipend()
display()

m_stipend = 3000
m_age 24getName()

display()

25-23

Behavior Changing (cont’d)g g ()
 Example usage of the previous design:

St d t t d t1("Ali " 20)

S d

Student student1("Alice", 20);
Graduate student2("Michael", 24, 6000, "8899 Storkes Rd.");

student1 display(); // Student::display()
m_name = "Mel"
m_age = 19

: Studentctor(), dtor()
getAge()
getName()

student1.display(); // Student::display()
cout << "\n";

g ()
display()

: Graduatector(), dtor()
getStipend()

m_name = "Ron"
m age = 24

: Student
getAge()

N ()

getStipend()
display()

m_stipend = 3000
m_age 24getName()

display()

25-23

Behavior Changing (cont’d)g g ()
 Example usage of the previous design:

St d t t d t1("Ali " 20)

S d

Student student1("Alice", 20);
Graduate student2("Michael", 24, 6000, "8899 Storkes Rd.");

student1 display(); // Student::display()
m_name = "Mel"
m_age = 19

: Studentctor(), dtor()
getAge()
getName()

student1.display(); // Student::display()
cout << "\n";

g ()
display()

: Graduatector(), dtor()
getStipend()

Output:

Alice is 20 years old.

m_name = "Ron"
m age = 24

: Student
getAge()

N ()

getStipend()
display()

m_stipend = 3000
m_age 24getName()

display()

25-23

Behavior Changing (cont’d)g g ()
 Example usage of the previous design:

St d t t d t1("Ali " 20)

S d

Student student1("Alice", 20);
Graduate student2("Michael", 24, 6000, "8899 Storkes Rd.");

student1 display(); // Student::display()
m_name = "Mel"
m_age = 19

: Studentctor(), dtor()
getAge()
getName()

student1.display(); // Student::display()
cout << "\n";
student2.display(); // Graduate::display() g ()

display()

: Graduatector(), dtor()
getStipend()

Output:

Alice is 20 years old.

m_name = "Ron"
m age = 24

: Student
getAge()

N ()

getStipend()
display()

m_stipend = 3000
m_age 24getName()

display()

25-23

Behavior Changing (cont’d)g g ()
 Example usage of the previous design:

St d t t d t1("Ali " 20)

S d

Student student1("Alice", 20);
Graduate student2("Michael", 24, 6000, "8899 Storkes Rd.");

student1 display(); // Student::display()
m_name = "Mel"
m_age = 19

: Studentctor(), dtor()
getAge()
getName()

student1.display(); // Student::display()
cout << "\n";
student2.display(); // Graduate::display() g ()

display()

: Graduatector(), dtor()
getStipend()

Output:

Alice is 20 years old.

m_name = "Ron"
m age = 24

: Student
getAge()

N ()

getStipend()
display()Michael is 24 years old.

He has a stipend of 6000 dollars.
His address is 8899 Storke Rd.

m_stipend = 3000
m_age 24getName()

display()

25-23

Behavior Changing (cont’d)g g ()
 Example usage of the previous design:

St d t t d t1("Ali " 20)

S d

Student student1("Alice", 20);
Graduate student2("Michael", 24, 6000, "8899 Storkes Rd.");

student1 display(); // Student::display()
m_name = "Mel"
m_age = 19

: Studentctor(), dtor()
getAge()
getName()

student1.display(); // Student::display()
cout << "\n";
student2.display(); // Graduate::display() g ()

display()

: Graduatector(), dtor()
getStipend()

Output:

Alice is 20 years old.

m_name = "Ron"
m age = 24

: Student
getAge()

N ()

getStipend()
display()Michael is 24 years old.

He has a stipend of 6000 dollars.
His address is 8899 Storke Rd.

m_stipend = 3000
m_age 24getName()

display()
 Note: display() interface usually

25-23

can enhance the encapsulation, replacing the
functionality of trivial accessor functions

Behavior Changing (cont’d)g g ()
 Avoid the redundancy of the common code, Student::display(),

in the inherited version of display() Graduate::display() byin the inherited version of display(), Graduate::display(), by

25-24

Behavior Changing (cont’d)g g ()
 Avoid the redundancy of the common code, Student::display(),

in the inherited version of display() Graduate::display() byin the inherited version of display(), Graduate::display(), by
void Graduate::display() const // masks the inherited version of display() {

cout << "He has a stipend of " << m stipend << " dollars \n";cout << "He has a stipend of " << m_stipend << " dollars.\n";
cout << "His address is " << m_address << ".\n";

}

25-24

Behavior Changing (cont’d)g g ()
 Avoid the redundancy of the common code, Student::display(),

in the inherited version of display() Graduate::display() byin the inherited version of display(), Graduate::display(), by
void Graduate::display() const // masks the inherited version of display() {

Student::display(); // invoke the inherited codes
cout << "He has a stipend of " << m stipend << " dollars \n";cout << "He has a stipend of " << m_stipend << " dollars.\n";
cout << "His address is " << m_address << ".\n";

}

25-24

Behavior Changing (cont’d)g g ()
 Avoid the redundancy of the common code, Student::display(),

in the inherited version of display() Graduate::display() byin the inherited version of display(), Graduate::display(), by
void Graduate::display() const // masks the inherited version of display() {

Student::display(); // invoke the inherited codes
cout << "He has a stipend of " << m stipend << " dollars \n";cout << "He has a stipend of " << m_stipend << " dollars.\n";
cout << "His address is " << m_address << ".\n";

}

 The functions defined in the base class are OK for most derived
classes. Only some of them need to be changed in the derived
classes Exclasses. Ex.

25-24

Behavior Changing (cont’d)g g ()
 Avoid the redundancy of the common code, Student::display(),

in the inherited version of display() Graduate::display() byin the inherited version of display(), Graduate::display(), by
void Graduate::display() const // masks the inherited version of display() {

Student::display(); // invoke the inherited codes
cout << "He has a stipend of " << m stipend << " dollars \n";cout << "He has a stipend of " << m_stipend << " dollars.\n";
cout << "His address is " << m_address << ".\n";

}

 The functions defined in the base class are OK for most derived
classes. Only some of them need to be changed in the derived
classes Ex

TwoDimShape
classes. Ex.

Square Rectangle Triangle

25-24

Behavior Changing (cont’d)g g ()
 Avoid the redundancy of the common code, Student::display(),

in the inherited version of display() Graduate::display() byin the inherited version of display(), Graduate::display(), by
void Graduate::display() const // masks the inherited version of display() {

Student::display(); // invoke the inherited codes
cout << "He has a stipend of " << m stipend << " dollars \n";cout << "He has a stipend of " << m_stipend << " dollars.\n";
cout << "His address is " << m_address << ".\n";

}

 The functions defined in the base class are OK for most derived
classes. Only some of them need to be changed in the derived
classes Ex

calculateArea() width*heightTwoDimShape
classes. Ex.

Square Rectangle Triangle

25-24

Behavior Changing (cont’d)g g ()
 Avoid the redundancy of the common code, Student::display(),

in the inherited version of display() Graduate::display() byin the inherited version of display(), Graduate::display(), by
void Graduate::display() const // masks the inherited version of display() {

Student::display(); // invoke the inherited codes
cout << "He has a stipend of " << m stipend << " dollars \n";cout << "He has a stipend of " << m_stipend << " dollars.\n";
cout << "His address is " << m_address << ".\n";

}

 The functions defined in the base class are OK for most derived
classes. Only some of them need to be changed in the derived
classes Ex

calculateArea() width*heightTwoDimShape
classes. Ex.

calculateArea()

Square Rectangle Triangle

25-24

calculateArea()

Behavior Changing (cont’d)g g ()
 Avoid the redundancy of the common code, Student::display(),

in the inherited version of display() Graduate::display() byin the inherited version of display(), Graduate::display(), by
void Graduate::display() const // masks the inherited version of display() {

Student::display(); // invoke the inherited codes
cout << "He has a stipend of " << m stipend << " dollars \n";cout << "He has a stipend of " << m_stipend << " dollars.\n";
cout << "His address is " << m_address << ".\n";

}

 The functions defined in the base class are OK for most derived
classes. Only some of them need to be changed in the derived
classes Ex

calculateArea() width*heightTwoDimShape
classes. Ex.

calculateArea()

Square Rectangle Triangle

25-24

calculateArea()

1/2*TwoDimShape::calculateArea()

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Example:p

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Example:p

Mini

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Example:p

Mini Delivery

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Example:p

Van

Mini Delivery

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Example:p

Van

Mini Delivery

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Example:p

Van

Mini Delivery Limo

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Example:p

Van

Mini Delivery Limo Sports

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Example:p

Van Car

Mini Delivery Limo Sports

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Example:p

Van Car

Mini Delivery Limo Sports

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Example:p

Van Car

Mini Delivery Limo Sports Dump

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Example:p

Van Car

Mini Delivery Limo Sports Dump Pickup

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Example:p

Van Car Truck

Mini Delivery Limo Sports Dump Pickup

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Example:p

Van Car Truck

Mini Delivery Limo Sports Dump Pickup

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Example:p

Vehicle

Van Car Truck

Mini Delivery Limo Sports Dump Pickup

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Example:p

Vehicle

Van Car Truck

Mini Delivery Limo Sports Dump Pickup

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Example:p

Appliance Vehicle

Van Car Truck

Mini Delivery Limo Sports Dump Pickup

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Example:p

Appliance Vehicle Computer

Van Car Truck

Mini Delivery Limo Sports Dump Pickup

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Machine
Example:

Machine
p

Appliance Vehicle Computer

Van Car Truck

Mini Delivery Limo Sports Dump Pickup

25-25

Class Hierarchyy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchyinheritance hierarchy.

Machine
Example:

Machine
p

Appliance Vehicle Computer

Van Car Truck

Mini Delivery Limo Sports Dump Pickup

25-25

Real-World Examples Of Inheritancep
 Microsoft Foundation Class Version 6.0

25-26

Real-World Examples Of Inheritancep
 Microsoft Foundation Class Version 6.0

 A tree style class hierarchy A tree-style class hierarchy

25-26

Real-World Examples Of Inheritancep
 Microsoft Foundation Class Version 6.0

 A tree style class hierarchy A tree-style class hierarchy

 Java Class Library
 …

25-26

25-27

Inheritance DesignInheritance Design

25-28

Exploring Solutions to Inheritancep g
 The University database program

25-29

Exploring Solutions to Inheritancep g
 The University database program

Student

Graduate

25-29

Exploring Solutions to Inheritancep g
 The University database program

Student
m_name
m_age

: Studentctor(), dtor()
setData()
getAge()

Graduate
getAge()
getName()

25-29

Exploring Solutions to Inheritancep g
 The University database program

Student
m_name
m_age

: Studentctor(), dtor()
setData()
getAge()

: Graduate

m name
: Student

ctor(), dtor()
getStipend()
getAddress()

Graduate
getAge()
getName()

m_stipend
m address

_
m_agesetData()

getAge()
getName() _

25-29

Exploring Solutions to Inheritancep g
 The University database program

Student
m_name
m_age

: Studentctor(), dtor()
setData()
getAge()

: Graduate

m name
: Student

ctor(), dtor()
getStipend()
getAddress()

Graduate
getAge()
getName()

m_stipend
m address

_
m_agesetData()

getAge()
getName() _

 We would like to add a class Faculty, whose attributes include

25-29

Exploring Solutions to Inheritancep g
 The University database program

Student
m_name
m_age

: Studentctor(), dtor()
setData()
getAge()

: Graduate

m name
: Student

ctor(), dtor()
getStipend()
getAddress()

Graduate
getAge()
getName()

m_stipend
m address

_
m_agesetData()

getAge()
getName() _

 We would like to add a class Faculty, whose attributes include
m_name
m_age
m_address
m rankm_rank

25-29

Exploring Solutions to Inheritancep g
 The University database program

Student
m_name
m_age

: Studentctor(), dtor()
setData()
getAge()

: Graduate

m name
: Student

ctor(), dtor()
getStipend()
getAddress()

Graduate
getAge()
getName()

m_stipend
m address

_
m_agesetData()

getAge()
getName() _

 We would like to add a class Faculty, whose attributes include
m_name
m_age
m_address
m rank

room # and building id of the office

m_rank

25-29

Exploring Solutions to Inheritancep g
 The University database program

Student
m_name
m_age

: Studentctor(), dtor()
setData()
getAge()

: Graduate

m name
: Student

ctor(), dtor()
getStipend()
getAddress()

Graduate
getAge()
getName()

m_stipend
m address

_
m_agesetData()

getAge()
getName() _

 We would like to add a class Faculty, whose attributes include
m_name
m_age
m_address
m rank Note that there is no stipend.

room # and building id of the office

m_rank

25-29

Exploring Solutions to Inheritancep g
 The University database program

Student
m_name
m_age

: Studentctor(), dtor()
setData()
getAge()

: Graduate

m name
: Student

ctor(), dtor()
getStipend()
getAddress()

Graduate
getAge()
getName()

m_stipend
m address

_
m_agesetData()

getAge()
getName() _

 We would like to add a class Faculty, whose attributes include
m_name
m_age
m_address
m rank Note that there is no stipend.

room # and building id of the office

 Should Faculty be derived from Student or Graduate or none of both?

m_rank

25-29

Exploring Solutions to Inheritancep g
 The University database program

Student
m_name
m_age

: Studentctor(), dtor()
setData()
getAge()

: Graduate

m name
: Student

ctor(), dtor()
getStipend()
getAddress()

Graduate
getAge()
getName()

m_stipend
m address

_
m_agesetData()

getAge()
getName() _

 We would like to add a class Faculty, whose attributes include
m_name
m_age
m_address
m rank Note that there is no stipend.

room # and building id of the office

 Should Faculty be derived from Student or Graduate or none of both?

m_rank

25-29

 Let us first try inheriting Faculty from Graduate since the two groups
have so much data in common

Exploring Solutions (cont’d)p g ()
 Deriving Faculty from Graduate makes a very efficient reuse of codes

25-30

Exploring Solutions (cont’d)p g ()
 Deriving Faculty from Graduate makes a very efficient reuse of codes

class Faculty: public Graduate {class Faculty: public Graduate {
public:

Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const;

private:
char *m_rank;

};};

25-30

Exploring Solutions (cont’d)p g ()
 Deriving Faculty from Graduate makes a very efficient reuse of codes

St d tclass Faculty: public Graduate { Student

G d

class Faculty: public Graduate {
public:

Faculty(char *name, int age, char *address, char *rank);
~Faculty();

Graduate

l

const char *getRank() const;
private:

char *m_rank;
}; Faculty};

25-30

Exploring Solutions (cont’d)p g ()
 Deriving Faculty from Graduate makes a very efficient reuse of codes

St d tclass Faculty: public Graduate { Student

G d

class Faculty: public Graduate {
public:

Faculty(char *name, int age, char *address, char *rank);
~Faculty();

Graduate

l

const char *getRank() const;
private:

char *m_rank;
}; Faculty};

 We are forced to ignore Graduate::m_stipend in ctor

25-30

Exploring Solutions (cont’d)p g ()
 Deriving Faculty from Graduate makes a very efficient reuse of codes

St d tclass Faculty: public Graduate { Student

G d

class Faculty: public Graduate {
public:

Faculty(char *name, int age, char *address, char *rank);
~Faculty();

Graduate

l

const char *getRank() const;
private:

char *m_rank;
}; Faculty};

 We are forced to ignore Graduate::m_stipend in ctor
Faculty::Faculty(char *name, int age, char *address, char *rank)

: Graduate(name age 0 address) {
Zero is a dummy
value for the stipend

: Graduate(name, age, 0, address) {
m_rank = new char[strlen(rank)+1];
strcpy(m_rank, rank);

}}

25-30

Exploring Solutions (cont’d)p g ()
 Deriving Faculty from Graduate makes a very efficient reuse of codes

St d tclass Faculty: public Graduate { Student

G d

class Faculty: public Graduate {
public:

Faculty(char *name, int age, char *address, char *rank);
~Faculty();

Graduate

l

const char *getRank() const;
private:

char *m_rank;
}; Faculty};

 We are forced to ignore Graduate::m_stipend in ctor
Faculty::Faculty(char *name, int age, char *address, char *rank)

: Graduate(name age 0 address) {
Zero is a dummy
value for the stipend

: Graduate(name, age, 0, address) {
m_rank = new char[strlen(rank)+1];
strcpy(m_rank, rank);

}}
 However, the client can still do this

25-30

Exploring Solutions (cont’d)p g ()
 Deriving Faculty from Graduate makes a very efficient reuse of codes

St d tclass Faculty: public Graduate { Student

G d

class Faculty: public Graduate {
public:

Faculty(char *name, int age, char *address, char *rank);
~Faculty();

Graduate

l

const char *getRank() const;
private:

char *m_rank;
}; Faculty};

 We are forced to ignore Graduate::m_stipend in ctor
Faculty::Faculty(char *name, int age, char *address, char *rank)

: Graduate(name age 0 address) {
Zero is a dummy
value for the stipend

: Graduate(name, age, 0, address) {
m_rank = new char[strlen(rank)+1];
strcpy(m_rank, rank);

}}
 However, the client can still do this

Faculty prof("Lin", 40, "#2 Bei-Ning", "Associate Professor");
t << f getStipend()

25-30

cout << prof.getStipend();

Exploring Solutions (cont’d)p g ()
 Deriving Faculty from Graduate makes a very efficient reuse of codes

St d tclass Faculty: public Graduate { Student

G d

class Faculty: public Graduate {
public:

Faculty(char *name, int age, char *address, char *rank);
~Faculty();

Graduate

l

const char *getRank() const;
private:

char *m_rank;
}; Faculty};

 We are forced to ignore Graduate::m_stipend in ctor
Faculty::Faculty(char *name, int age, char *address, char *rank)

: Graduate(name age 0 address) {
Zero is a dummy
value for the stipend

: Graduate(name, age, 0, address) {
m_rank = new char[strlen(rank)+1];
strcpy(m_rank, rank);

}}
 However, the client can still do this

Faculty prof("Lin", 40, "#2 Bei-Ning", "Associate Professor");
t << f getStipend()

25-30

You can spare a data member but cannot
turn off an interface of the base class.

cout << prof.getStipend();

Exploring Solutions (cont’d)p g ()
 Deriving Faculty from Graduate makes a very efficient reuse of codes

St d tclass Faculty: public Graduate { Student

G d

class Faculty: public Graduate {
public:

Faculty(char *name, int age, char *address, char *rank);
~Faculty();

Graduate

l

const char *getRank() const;
private:

char *m_rank;
}; Faculty};

 We are forced to ignore Graduate::m_stipend in ctor
Faculty::Faculty(char *name, int age, char *address, char *rank)

: Graduate(name age 0 address) {
Zero is a dummy
value for the stipend

: Graduate(name, age, 0, address) {
m_rank = new char[strlen(rank)+1];
strcpy(m_rank, rank);

}}
 However, the client can still do this

Faculty prof("Lin", 40, "#2 Bei-Ning", "Associate Professor");
t << f getStipend()

25-30

You can spare a data member but cannot
turn off an interface of the base class.This is NOT a good solution!

cout << prof.getStipend();

Another Possible Solution
 How about deriving Faculty from Student because

Faculty requires all of the data from Studenty q

25-31

Another Possible Solution
 How about deriving Faculty from Student because

Faculty requires all of the data from Studenty q
class Faculty: public Student {
public:

Faculty(char *name, int age, char *address, char *rank);y g
~Faculty();
const char *getRank() const;
const char *getAddress() const;

private:private:
char *m_address;
char *m_rank;

}; };

25-31

Another Possible Solution
 How about deriving Faculty from Student because

Faculty requires all of the data from Studenty q
class Faculty: public Student {
public:

Faculty(char *name, int age, char *address, char *rank);

Student

y g
~Faculty();
const char *getRank() const;
const char *getAddress() const;

private:

Graduate Faculty

private:
char *m_address;
char *m_rank;

}; };

25-31

Another Possible Solution
 How about deriving Faculty from Student because

Faculty requires all of the data from Studenty q
class Faculty: public Student {
public:

Faculty(char *name, int age, char *address, char *rank);

Student

y g
~Faculty();
const char *getRank() const;
const char *getAddress() const;

private:

Graduate Faculty

private:
char *m_address;
char *m_rank;

};

 What is the problem now?
};

25-31

Another Possible Solution
 How about deriving Faculty from Student because

Faculty requires all of the data from Studenty q
class Faculty: public Student {
public:

Faculty(char *name, int age, char *address, char *rank);

Student

y g
~Faculty();
const char *getRank() const;
const char *getAddress() const;

private:

Graduate Faculty

private:
char *m_address;
char *m_rank;

};

 What is the problem now?
};

 Faculty duplicates some codes in Graduate: m_address related

25-31

Another Possible Solution
 How about deriving Faculty from Student because

Faculty requires all of the data from Studenty q
class Faculty: public Student {
public:

Faculty(char *name, int age, char *address, char *rank);

Student

y g
~Faculty();
const char *getRank() const;
const char *getAddress() const;

private:

Graduate Faculty

private:
char *m_address;
char *m_rank;

};

 What is the problem now?
};

 Faculty duplicates some codes in Graduate: m_address related
 What happens if Student adds a field for "undergraduate advisor"?

25-31

Another Possible Solution
 How about deriving Faculty from Student because

Faculty requires all of the data from Studenty q
class Faculty: public Student {
public:

Faculty(char *name, int age, char *address, char *rank);

Student

y g
~Faculty();
const char *getRank() const;
const char *getAddress() const;

private:

Graduate Faculty

private:
char *m_address;
char *m_rank;

};

 What is the problem now?
};

 Faculty duplicates some codes in Graduate: m_address related
 What happens if Student adds a field for "undergraduate advisor"?
 The problem is that Faculty is intrinsically not a Student.

25-31

Another Possible Solution
 How about deriving Faculty from Student because

Faculty requires all of the data from Studenty q
class Faculty: public Student {
public:

Faculty(char *name, int age, char *address, char *rank);

Student

y g
~Faculty();
const char *getRank() const;
const char *getAddress() const;

private:

Graduate Faculty

private:
char *m_address;
char *m_rank;

};

 What is the problem now?
};

 Faculty duplicates some codes in Graduate: m_address related
 What happens if Student adds a field for "undergraduate advisor"?
 The problem is that Faculty is intrinsically not a Student.

25-31

“Inheritance SHOULD NOT be designed based on solely
implementation considerations – eg. code reuse.”

A Better Designg
 Create a Person class and put everything common to all people in

that class all other classes are derived from this classthat class, all other classes are derived from this class.

25-32

A Better Designg
 Create a Person class and put everything common to all people in

that class all other classes are derived from this classthat class, all other classes are derived from this class.
Person

getAge()
getName()
m_age
m_name

Undergraduate Graduate Facultyg y
getStipend()
getAddress()
m_stipend

dd

getRank()
getAddress()
m_rank

ddm_address m_address

25-32

A Better Designg
 Create a Person class and put everything common to all people in

that class all other classes are derived from this classthat class, all other classes are derived from this class.
Person

getAge()
getName()
m_age
m_name Student is replaced by

Undergraduate

Undergraduate Graduate Faculty

Undergraduate

g y
getStipend()
getAddress()
m_stipend

dd

getRank()
getAddress()
m_rank

ddm_address m_address

25-32

A Better Designg
 Create a Person class and put everything common to all people in

that class all other classes are derived from this classthat class, all other classes are derived from this class.
Person

getAge()
getName()
m_age
m_name Student is replaced by

Undergraduate

Undergraduate Graduate Faculty

Undergraduate

g y
getStipend()
getAddress()
m_stipend

dd

getRank()
getAddress()
m_rank

ddm_address m_address

 Should we eliminate UnderGraduate
d l P i it l ?

25-32

and use only Person in its place?

A Better Designg
 Create a Person class and put everything common to all people in

that class all other classes are derived from this classthat class, all other classes are derived from this class.
Person

getAge()
getName()
m_age
m_name Student is replaced by

Undergraduate

Undergraduate Graduate Faculty

Undergraduate

g y
getStipend()
getAddress()
m_stipend

dd

getRank()
getAddress()
m_rank

ddm_address m_address

 Should we eliminate UnderGraduate
d l P i it l ?

25-32

and use only Person in its place?
 Should Graduate be derived from Undergraduate?

A Better Designg
 Create a Person class and put everything common to all people in

that class all other classes are derived from this classthat class, all other classes are derived from this class.
Person

getAge()
getName()
m_age
m_name Student is replaced by

Undergraduate

Undergraduate Graduate Faculty

Undergraduate

g y
getStipend()
getAddress()
m_stipend

dd

getRank()
getAddress()
m_rank

ddm_address m_address

Is there any redundancy?
 Should we eliminate UnderGraduate

d l P i it l ?

25-32

Is there any redundancy?and use only Person in its place?
 Should Graduate be derived from Undergraduate?

Adding an Office Classg

25-33

Adding an Office Classg
 Codes related to address could be merged into a single copy. How

about encapsulating all data related to the address in the Office class?about encapsulating all data related to the address in the Office class?

25-33

Adding an Office Classg
 Codes related to address could be merged into a single copy. How

about encapsulating all data related to the address in the Office class?about encapsulating all data related to the address in the Office class?

 Anyone who needs an office can then inherit from Office.

Office

Graduate Faculty

25-33

Adding an Office Classg
 Codes related to address could be merged into a single copy. How

about encapsulating all data related to the address in the Office class?about encapsulating all data related to the address in the Office class?

 Anyone who needs an office can then inherit from Office.

Office But Graduate and Faculty still need to
inherit name and age categories so this
d i f t thi i h it

Graduate Faculty
design forces us to this inheritance

25-33

Adding an Office Classg
 Codes related to address could be merged into a single copy. How

about encapsulating all data related to the address in the Office class?about encapsulating all data related to the address in the Office class?

 Anyone who needs an office can then inherit from Office.

Office But Graduate and Faculty still need to
inherit name and age categories so this
d i f t thi i h it

Graduate Faculty

Person

design forces us to this inheritance

Person

Undergraduate Office

25-33

Graduate Faculty

Adding an Office Classg
 Codes related to address could be merged into a single copy. How

about encapsulating all data related to the address in the Office class?about encapsulating all data related to the address in the Office class?

 Anyone who needs an office can then inherit from Office.

Office But Graduate and Faculty still need to
inherit name and age categories so this
d i f t thi i h it

Graduate Faculty

Person

design forces us to this inheritance

Person
Bad design!! Problematic!!?

Undergraduate Office

25-33

Graduate Faculty

Adding an Office Classg
 Codes related to address could be merged into a single copy. How

about encapsulating all data related to the address in the Office class?about encapsulating all data related to the address in the Office class?

 Anyone who needs an office can then inherit from Office.

Office But Graduate and Faculty still need to
inherit name and age categories so this
d i f t thi i h it

Graduate Faculty

Person

design forces us to this inheritance

Person
Bad design!! Problematic!!?

What's wrong?
Undergraduate Office

25-33

Graduate Faculty

Adding an Office Classg
 Codes related to address could be merged into a single copy. How

about encapsulating all data related to the address in the Office class?about encapsulating all data related to the address in the Office class?

 Anyone who needs an office can then inherit from Office.

Office But Graduate and Faculty still need to
inherit name and age categories so this
d i f t thi i h it

Graduate Faculty

Person

design forces us to this inheritance

Person
Bad design!! Problematic!!?

What's wrong?
Undergraduate Office

• If the Office has a clean() method,
The Faculty automatically has a

25-33

Graduate Faculty
clean() method. What does it mean?

• What if a faculty has two offices?

Code for Office Solution
class Office: public Person {
public:

Office(char *name int age char address);Office(char name, int age, char address);
~Office()
const char *getAddress() const;

private:
char *m_address;

};

25-34

Code for Office Solution
class Office: public Person {
public:

Office(char *name int age char address);Office(char name, int age, char address);
~Office()
const char *getAddress() const;

private:
char *m_address;

};
class Graduate: public Office {

blipublic:
Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;

private:private:
int m_stipend;

};

25-34

Code for Office Solution
class Office: public Person {
public:

Office(char *name int age char address);Office(char name, int age, char address);
~Office()
const char *getAddress() const;

private:
char *m_address;

};
class Graduate: public Office {

blipublic:
Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;

private:

class Faculty: public Office {

private:
int m_stipend;

};
y p {

public:
Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const;

25-34

const char *getRank() const;
private:

char *m_rank;
};

Code for Office Solution
class Office: public Person {
public:

Office(char *name int age char address);Office(char name, int age, char address);
~Office()
const char *getAddress() const;

private: Poor design!!
char *m_address;

};
class Graduate: public Office {

bli

g
Problematic!!?

public:
Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;

private:

class Faculty: public Office {

private:
int m_stipend;

};
y p {

public:
Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const;

25-34

const char *getRank() const;
private:

char *m_rank;
};

Final Solution
 Back to our original inheritance design (good design)

Person

G d t F ltU d d t

Graduate FacultyUndergraduate

25-35

Final Solution
 Back to our original inheritance design (good design)

Person

G d t F ltU d d t Offi

 Instead of having Graduate and Faculty inherit from Office, we

Graduate FacultyUndergraduate Office

store an Office object within each classes

25-35

Final Solution
 Back to our original inheritance design (good design)

Person

G d t F ltU d d t Offi

 Instead of having Graduate and Faculty inherit from Office, we

Graduate FacultyUndergraduate Office

store an Office object within each classes
 The office class exists separately, without involving any inheritance

 Codes:
class Office {
public:public:

Office(char *address);
~Office();
const char *getAddress() const;

25-35

g
private:

char *m_address;
};

Final Solution (cont’d)()
class Graduate: public Person {
public:

Graduate(char *name int age int stipend char *address);Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;

private:p
int m_stipend;
Office m_office;

};

25-36

Final Solution (cont’d)()
class Graduate: public Person {
public:

Graduate(char *name int age int stipend char *address);Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;

private: class Faculty: public Personp
int m_stipend;
Office m_office;

};

class Faculty: public Person
{
public:

Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char* getAddress() const;
const char *getRank() const;

private:private:
char *m_rank;
Office m_office;

};

25-36

Final Solution (cont’d)()
class Graduate: public Person {
public:

Graduate(char *name int age int stipend char *address);Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;

private: class Faculty: public Personp
int m_stipend;
Office m_office;

};

class Faculty: public Person
{
public:

Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char* getAddress() const;
const char *getRank() const;

private:const char* Graduate:: private:
char *m_rank;
Office m_office;

};

getAddress() const {
return m_office.getAddress();

}

25-36

Final Solution (cont’d)()
class Graduate: public Person {
public:

Graduate(char *name int age int stipend char *address);Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;

private: class Faculty: public Personp
int m_stipend;
Office m_office;

};

class Faculty: public Person
{
public:

Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char* getAddress() const;
const char *getRank() const;

private:const char* Graduate::

delegation
private:

char *m_rank;
Office m_office;

};

getAddress() const {
return m_office.getAddress();

}

25-36

Final Solution (cont’d)()
class Graduate: public Person {
public:

Graduate(char *name int age int stipend char *address);Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;

private: class Faculty: public Personp
int m_stipend;
Office m_office;

};

class Faculty: public Person
{
public:

Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char* getAddress() const;
const char *getRank() const;

private:const char* Graduate::

delegation
private:

char *m_rank;
Office m_office;

};

getAddress() const {
return m_office.getAddress();

}
 Note: the data part m_office in Graduate and Faculty is replicated.

However, the code to handle address is reduced to a single
copy i e Office::getAddress() If we want to maintain a single

25-36

copy, i.e. Office::getAddress(). If we want to maintain a single
object for the same office, we can use pointer or reference to
implement m_office.

Further Abstraction
 When the relationships between Graduate or Faculty objects and

other objects are common we can model their relationships withinother objects are common, we can model their relationships within
a parent class.

25-37

Further Abstraction
 When the relationships between Graduate or Faculty objects and

other objects are common we can model their relationships withinother objects are common, we can model their relationships within
a parent class.

Person

Undergraduate OfficePersonnelWithOffice

Graduate Faculty

25-37

Further Abstraction
 When the relationships between Graduate or Faculty objects and

other objects are common we can model their relationships withinother objects are common, we can model their relationships within
a parent class.

Person

Undergraduate OfficePersonnelWithOffice

Graduate Faculty

Note: in the above class diagram, each
Graduate object or Faculty object
has an association with an Officehas an association with an Office
object

25-37

Further Abstraction
 When the relationships between Graduate or Faculty objects and

other objects are common we can model their relationships withinother objects are common, we can model their relationships within
a parent class.

Person

Undergraduate OfficePersonnelWithOffice

Graduate Faculty
class PersonnelWithOffice {

bli
Note: in the above class diagram, each

Graduate object or Faculty object
has an association with an Office

public:
const char *getAddress() const;

private:
Office m office; has an association with an Office

object
Office m_office;

};

25-37

Further Abstraction
 When the relationships between Graduate or Faculty objects and

other objects are common we can model their relationships withinother objects are common, we can model their relationships within
a parent class.

Person

Undergraduate OfficePersonnelWithOffice

Graduate Faculty
class PersonnelWithOffice {

bli
Note: in the above class diagram, each

Graduate object or Faculty object
has an association with an Office

public:
const char *getAddress() const;

private:
Office m office; has an association with an Office

object

If th ld b l ffi f t i l th i t

Office m_office;
};

25-37

 If there could be several offices for a certain personnel, the private
member could be a container, ex. vector<Office> m_offices;

Design Rules for Inheritanceg
 Primary guide: Class A should only be derived from Class B if

Class A is a type of Class B Byp B

AA

25-38

Design Rules for Inheritanceg
 Primary guide: Class A should only be derived from Class B if

Class A is a type of Class B BPersonyp B

A

Person

St d t

IS A A student is a person
AStudent

25-38

Design Rules for Inheritanceg
 Primary guide: Class A should only be derived from Class B if

Class A is a type of Class B BPersonyp B

A

Person

St d t

IS A
Thi d f i f l

 A student is a person
AStudent This def is formal

but still abstract!!
Difficult to follow! Inheritance is called an IS-A relationship

25-38

Design Rules for Inheritanceg
 Primary guide: Class A should only be derived from Class B if

Class A is a type of Class B BPersonyp B

A

Person

St d t

IS A
Thi d f i f l

 A student is a person
AStudent This def is formal

but still abstract!!
Difficult to follow! Inheritance is called an IS-A relationship

 What we mean by “is-a” in programming is “substitutability”.

25-38

Design Rules for Inheritanceg
 Primary guide: Class A should only be derived from Class B if

Class A is a type of Class B BPerson Li k b tit tiyp B

A

Person

St d t

IS A
Thi d f i f l

Liskov substitution
Principle (LSP) A student is a person

AStudent This def is formal
but still abstract!!
Difficult to follow! Inheritance is called an IS-A relationship

 What we mean by “is-a” in programming is “substitutability”.

25-38

Design Rules for Inheritanceg
 Primary guide: Class A should only be derived from Class B if

Class A is a type of Class B BPerson Li k b tit tiyp B

A

Person

St d t

IS A
Thi d f i f l

Liskov substitution
Principle (LSP) A student is a person

AStudent This def is formal
but still abstract!!
Difficult to follow! Inheritance is called an IS-A relationship

 What we mean by “is-a” in programming is “substitutability”.
 Eg. Can an object of type Student be used in whatever place of

an object of type Person? This is described in terms of theiran object of type Person? This is described in terms of their
interfaces (the promises and requirements), instead of their
implementations. If yes, Student can inherit Person.p y ,

25-38

Design Rules for Inheritanceg
 Primary guide: Class A should only be derived from Class B if

Class A is a type of Class B BPerson Li k b tit tiyp B

A

Person

St d t

IS A
Thi d f i f l

Liskov substitution
Principle (LSP) A student is a person

AStudent This def is formal
but still abstract!!
Difficult to follow! Inheritance is called an IS-A relationship

 What we mean by “is-a” in programming is “substitutability”.
 Eg. Can an object of type Student be used in whatever place of

an object of type Person? This is described in terms of theiran object of type Person? This is described in terms of their
interfaces (the promises and requirements), instead of their
implementations. If yes, Student can inherit Person.

 Inheritance should be “natural”
p y ,

25-38

Design Rules for Inheritanceg
 Primary guide: Class A should only be derived from Class B if

Class A is a type of Class B BPerson Li k b tit tiyp B

A

Person

St d t

IS A
Thi d f i f l

Liskov substitution
Principle (LSP) A student is a person

AStudent This def is formal
but still abstract!!
Difficult to follow! Inheritance is called an IS-A relationship

 What we mean by “is-a” in programming is “substitutability”.
 Eg. Can an object of type Student be used in whatever place of

an object of type Person? This is described in terms of theiran object of type Person? This is described in terms of their
interfaces (the promises and requirements), instead of their
implementations. If yes, Student can inherit Person.

Student
Proper inheritance Inheritance should be “natural”

p y ,

25-38
Graduate

Design Rules for Inheritanceg
 Primary guide: Class A should only be derived from Class B if

Class A is a type of Class B BPerson Li k b tit tiyp B

A

Person

St d t

IS A
Thi d f i f l

Liskov substitution
Principle (LSP) A student is a person

AStudent This def is formal
but still abstract!!
Difficult to follow! Inheritance is called an IS-A relationship

 What we mean by “is-a” in programming is “substitutability”.
 Eg. Can an object of type Student be used in whatever place of

an object of type Person? This is described in terms of theiran object of type Person? This is described in terms of their
interfaces (the promises and requirements), instead of their
implementations. If yes, Student can inherit Person.

Student
Proper inheritance

Undergraduate
Improper inheritance Inheritance should be “natural”

p y ,

25-38
Graduate Graduate

Design Rules for Inheritanceg
 Primary guide: Class A should only be derived from Class B if

Class A is a type of Class B BPerson Li k b tit tiyp B

A

Person

St d t

IS A
Thi d f i f l

Liskov substitution
Principle (LSP) A student is a person

AStudent This def is formal
but still abstract!!
Difficult to follow! Inheritance is called an IS-A relationship

 What we mean by “is-a” in programming is “substitutability”.
 Eg. Can an object of type Student be used in whatever place of

an object of type Person? This is described in terms of theiran object of type Person? This is described in terms of their
interfaces (the promises and requirements), instead of their
implementations. If yes, Student can inherit Person.

Student
Proper inheritance

Undergraduate
Improper inheritance Inheritance should be “natural”

p y ,

 The second case is a bad inheritance

25-38
Graduate Graduate

 The second case is a bad inheritance
even if Undergraduate is internally
identical to Student.

Design Rules (cont’d)g ()

25-39

Design Rules (cont’d)g ()

Undergraduate
m_advisor

25-39

Design Rules (cont’d)g ()

Graduate
m_office
m_stipend

Undergraduate
m_advisor

25-39

Design Rules (cont’d)g ()

Graduate
m_office
m_stipend

Faculty
m_office
m_rank

Undergraduate
m_advisor

25-39

Design Rules (cont’d)g ()

Person
m_age
m_name

Graduate
m_office
m_stipend

Faculty
m_office
m_rank

Undergraduate
m_advisor

25-39

Design Rules (cont’d)g ()

Person
m_age
m_name

Graduate
m_office
m_stipend

Faculty
m_office
m_rank

Undergraduate
m_advisor

25-39

Design Rules (cont’d)g ()
 Common code and data between classes can be shared by creating

a base class (one of the two primary benefits we can get froma base class (one of the two primary benefits we can get from
inheritance) Person

m_age
m_name

Graduate
m_office
m_stipend

Faculty
m_office
m_rank

Undergraduate
m_advisor

25-39

Design Rules (cont’d)g ()
 Common code and data between classes can be shared by creating

a base class (one of the two primary benefits we can get froma base class (one of the two primary benefits we can get from
inheritance) Person

m_age
m_name

Graduate
m_office
m_stipend

Faculty
m_office
m_rank

Undergraduate
m_advisor

Graduate

25-39

Design Rules (cont’d)g ()
 Common code and data between classes can be shared by creating

a base class (one of the two primary benefits we can get froma base class (one of the two primary benefits we can get from
inheritance) Person

m_age
m_name

Graduate
m_office
m_stipend

Faculty
m_office
m_rank

Undergraduate
m_advisor

Graduate Faculty

25-39

Design Rules (cont’d)g ()
 Common code and data between classes can be shared by creating

a base class (one of the two primary benefits we can get froma base class (one of the two primary benefits we can get from
inheritance) Person

m_age
m_name

Office
Graduate

m_office
m_stipend

Faculty
m_office
m_rank

Undergraduate
m_advisor

Graduate Faculty

25-39

Design Rules (cont’d)g ()
 Common code and data between classes can be shared by creating

a base class (one of the two primary benefits we can get froma base class (one of the two primary benefits we can get from
inheritance) Person

m_age
m_name

Office
Graduate

m_office
m_stipend

Faculty
m_office
m_rank

Undergraduate
m_advisor

Graduate Faculty

25-39

Design Rules (cont’d)g ()
 Common code and data between classes can be shared by creating

a base class (one of the two primary benefits we can get froma base class (one of the two primary benefits we can get from
inheritance) Person

m_age
m_name

Office
Graduate

m_office
m_stipend

Faculty
m_office
m_rank

Undergraduate
m_advisor

Graduate Faculty

25-39

Design Rules (cont’d)g ()
 Common code and data between classes can be shared by creating

a base class (one of the two primary benefits we can get froma base class (one of the two primary benefits we can get from
inheritance) Person

m_age
m_name

Office
Graduate

m_office
m_stipend

Faculty
m_office
m_rank

Undergraduate
m_advisor

Graduate Faculty

 Never violate the primary objectives for the sake of code sharing!

25-39

Design Rules (cont’d)g ()
 Common code and data between classes can be shared by creating

a base class (one of the two primary benefits we can get froma base class (one of the two primary benefits we can get from
inheritance) Person

m_age
m_name

Office
Graduate

m_office
m_stipend

Faculty
m_office
m_rank

Undergraduate
m_advisor

Graduate Faculty

 Never violate the primary objectives for the sake of code sharing!
 Bad cases of inheritance (improper inheritances) are often cured (p p)

through composition (containment / aggregation)

25-39

Design Rules (cont’d)g ()
 Common code and data between classes can be shared by creating

a base class (one of the two primary benefits we can get froma base class (one of the two primary benefits we can get from
inheritance) Person

m_age
m_name

Office
Graduate

m_office
m_stipend

Faculty
m_office
m_rank

Undergraduate
m_advisor

Graduate Faculty

 Never violate the primary objectives for the sake of code sharing!
 Bad cases of inheritance (improper inheritances) are often cured

Faculty

(p p)
through composition (containment / aggregation)

25-39

Faculty

Office

Design Rules (cont’d)g ()
 Common code and data between classes can be shared by creating

a base class (one of the two primary benefits we can get froma base class (one of the two primary benefits we can get from
inheritance) Person

m_age
m_name

Office
Graduate

m_office
m_stipend

Faculty
m_office
m_rank

Undergraduate
m_advisor

Graduate Faculty

 Never violate the primary objectives for the sake of code sharing!
 Bad cases of inheritance (improper inheritances) are often cured

Faculty This is referred to as the HAS A relationship

(p p)
through composition (containment / aggregation)

25-39

Faculty

Office
This is referred to as the HAS-A relationship.
It operates in the form of delegation.

Dubious Examples of Inheritancep
 Taken from Deitel & Deitel, C: How to program, p. 736

25-40

Dubious Examples of Inheritancep
 Taken from Deitel & Deitel, C: How to program, p. 736

class Point {
public:

Point(double x=0, double y=0);
protected:

double x y;double x, y;
};

25-40

Dubious Examples of Inheritancep
 Taken from Deitel & Deitel, C: How to program, p. 736

class Point {
public:

Point(double x=0, double y=0);
protected:

double x y;double x, y;
};
class Circle: public Point {
public:public:

Circle(double x=0, double y=0, double radius=0);
void display() const;

private:
double radius;

};

25-40

Dubious Examples of Inheritancep
 Taken from Deitel & Deitel, C: How to program, p. 736

class Point {

void Circle::display() {
cout << "Center = " << c.x << ", " << c.y

<< "] R di " << di

public:
Point(double x=0, double y=0);

protected:
double x y; << "]; Radius = " << radius;

}
double x, y;

};
class Circle: public Point {
public:public:

Circle(double x=0, double y=0, double radius=0);
void display() const;

private:
double radius;

};

25-40

Dubious Examples of Inheritancep
 Taken from Deitel & Deitel, C: How to program, p. 736

class Point {

void Circle::display() {
cout << "Center = " << c.x << ", " << c.y

<< "] R di " << di

public:
Point(double x=0, double y=0);

protected:
double x y; << "]; Radius = " << radius;

}
double x, y;

};
class Circle: public Point {
public:public:

Circle(double x=0, double y=0, double radius=0);
void display() const;

private:
double radius;

};
 Design rationale: A circle is a type of point, with common data. The

di f i l i hi P l h i l!radius of a circle is zero or approaching zero. ... Purely mathematical!

25-40

Dubious Examples of Inheritancep
 Taken from Deitel & Deitel, C: How to program, p. 736

class Point {

void Circle::display() {
cout << "Center = " << c.x << ", " << c.y

<< "] R di " << di

public:
Point(double x=0, double y=0);

protected:
double x y; << "]; Radius = " << radius;

}
double x, y;

};
class Circle: public Point {
public:public:

Circle(double x=0, double y=0, double radius=0);
void display() const;

private:
double radius;

};
 Design rationale: A circle is a type of point, with common data. The

di f i l i hi P l h i l!radius of a circle is zero or approaching zero. ... Purely mathematical!
 Critiques: A circle is not a point. Instead, a circle has a point

corresponding to its center

25-40

corresponding to its center

Dubious Examples of Inheritancep
 Taken from Deitel & Deitel, C: How to program, p. 736

class Point {

void Circle::display() {
cout << "Center = " << c.x << ", " << c.y

<< "] R di " << di

public:
Point(double x=0, double y=0);

protected:
double x y; << "]; Radius = " << radius;

}
double x, y;

};
class Circle: public Point {
public:public:

Circle(double x=0, double y=0, double radius=0);
void display() const;

private:
double radius;

};
 Design rationale: A circle is a type of point, with common data. The

di f i l i hi P l h i l!
 Critiques: A circle is not a point. Instead, a circle has a point

corresponding to its center Substitutability: Can a circle be used

radius of a circle is zero or approaching zero. ... Purely mathematical!
 Critiques: A circle is not a point. Instead, a circle has a point

corresponding to its center

25-40

corresponding to its center. Substitutability: Can a circle be used
as a point in constructing the four corners of a rectangle?
corresponding to its center

Dubious Examples of Inheritancep
 Taken from Deitel & Deitel, C: How to program, p. 736

class Point {

void Circle::display() {
cout << "Center = " << c.x << ", " << c.y

<< "] R di " << di

public:
Point(double x=0, double y=0);

protected:
double x y; << "]; Radius = " << radius;

}
double x, y;

};
class Circle: public Point {
public:public:

Circle(double x=0, double y=0, double radius=0);
void display() const;

private:
double radius;

};
 Design rationale: A point is a type of circle, with common data, when

h di f i l i hi P l h i l!
 Critiques: A circle is not a point. Instead, a circle has a point

corresponding to its center Substitutability: Can a circle be used

the radius of a circle is approaching zero. ... Purely mathematical!
 Critiques: A circle is not a point. Instead, a circle has a point

corresponding to its center
 Critiques: A circle is not a point. Instead, a circle has a point

corresponding to its center Substitutability: Can a circle be used

25-40

corresponding to its center. Substitutability: Can a circle be used
as a point in constructing the four corners of a rectangle?
corresponding to its centercorresponding to its center. Substitutability: Can a circle be used
as a point in constructing the four corners of a rectangle? Can a
circle be used as the center of another circle?

Some Other Dubious Examplesp
 Ex 1: A stack derived from a linked list

25-41

Some Other Dubious Examplesp
 Ex 1: A stack derived from a linked list What are the problems?

25-41

Some Other Dubious Examplesp
 Ex 1: A stack derived from a linked list What are the problems?

 This stack can then be operated as a linked list the This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

25-41

Some Other Dubious Examplesp
 Ex 1: A stack derived from a linked list What are the problems?

 This stack can then be operated as a linked list the This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

 If you try to turn off the insert()/delete() interface that could y y () ()
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of
operationsoperations.

25-41

Some Other Dubious Examplesp
 Ex 1: A stack derived from a linked list What are the problems?

 This stack can then be operated as a linked list the This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

 If you try to turn off the insert()/delete() interface that could y y () ()
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of
operations Client codes break!operations. Client codes break!

25-41

Some Other Dubious Examplesp
 Ex 1: A stack derived from a linked list What are the problems?

 This stack can then be operated as a linked list the This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

 If you try to turn off the insert()/delete() interface that could y y () ()
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of
operations A Stack IS NOT a LinkListClient codes break!operations. A Stack IS-NOT a LinkList.Client codes break!

25-41

Some Other Dubious Examplesp
 Ex 1: A stack derived from a linked list What are the problems?

 This stack can then be operated as a linked list the This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

 If you try to turn off the insert()/delete() interface that could y y () ()
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of
operations A Stack IS NOT a LinkListClient codes break!

 Ex 2: A file pathname class derived from a string class
operations. A Stack IS-NOT a LinkList.Client codes break!

25-41

Some Other Dubious Examplesp
 Ex 1: A stack derived from a linked list What are the problems?

 This stack can then be operated as a linked list the This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

 If you try to turn off the insert()/delete() interface that could y y () ()
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of
operations A Stack IS NOT a LinkListClient codes break!

 Ex 2: A file pathname class derived from a string class
operations.

note: a pathname IS indeed implemented by a string but it is a

A Stack IS-NOT a LinkList.Client codes break!

note: a pathname IS indeed implemented by a string, but it is a
special string that cannot be longer than 32 characters

25-41

Some Other Dubious Examplesp
 Ex 1: A stack derived from a linked list What are the problems?

 This stack can then be operated as a linked list the This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

 If you try to turn off the insert()/delete() interface that could y y () ()
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of
operations A Stack IS NOT a LinkListClient codes break!

 Ex 2: A file pathname class derived from a string class
operations.

note: a pathname IS indeed implemented by a string but it is a

A Stack IS-NOT a LinkList.Client codes break!

 Design rule: The derived class extends the base class

note: a pathname IS indeed implemented by a string, but it is a
special string that cannot be longer than 32 characters

base class

g

25-41

derived class

Some Other Dubious Examplesp
 Ex 1: A stack derived from a linked list What are the problems?

 This stack can then be operated as a linked list the This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

 If you try to turn off the insert()/delete() interface that could y y () ()
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of
operations A Stack IS NOT a LinkListClient codes break!

 Ex 2: A file pathname class derived from a string class
operations.

note: a pathname IS indeed implemented by a string but it is a

A Stack IS-NOT a LinkList.Client codes break!

 Design rule: The derived class extends the base class

note: a pathname IS indeed implemented by a string, but it is a
special string that cannot be longer than 32 characters

 Design rule: The derived class extends the base class, not the other

base class base class

gg ,
way around. specialization

25-41

derived class derived class

Points to Consider
To design a Shape inheritance hierarchy

 25-42

Points to Consider
To design a Shape inheritance hierarchy
 What are the common operations you want to perform on all Shapes What are the common operations you want to perform on all Shapes

 25-42

Points to Consider
To design a Shape inheritance hierarchy
 What are the common operations you want to perform on all Shapes What are the common operations you want to perform on all Shapes
 What other kinds of Shapes might you use in your application?

(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus, (g , , yg , p , q , g ,
Pentagon, …) Circle-Ellipse Square-Rectangle

 25-42

Points to Consider
To design a Shape inheritance hierarchy
 What are the common operations you want to perform on all Shapes What are the common operations you want to perform on all Shapes
 What other kinds of Shapes might you use in your application?

(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus, (g , , yg , p , q , g ,
Pentagon, …) Circle-Ellipse Square-Rectangle

 Why do you need a Rectangle class as the base class of a Square?

 25-42

Points to Consider
To design a Shape inheritance hierarchy
 What are the common operations you want to perform on all Shapes What are the common operations you want to perform on all Shapes
 What other kinds of Shapes might you use in your application?

(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus, (g , , yg , p , q , g ,
Pentagon, …) Circle-Ellipse Square-Rectangle

 Why do you need a Rectangle class as the base class of a Square?
 Can a Square substitute for a Rectangle?

 25-42

Points to Consider
To design a Shape inheritance hierarchy
 What are the common operations you want to perform on all Shapes What are the common operations you want to perform on all Shapes
 What other kinds of Shapes might you use in your application?

(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus, (g , , yg , p , q , g ,
Pentagon, …) Circle-Ellipse Square-Rectangle

 Why do you need a Rectangle class as the base class of a Square?
 Can a Square substitute for a Rectangle?
 A Rhombus is four-sided, like a Rectangle, so should Rectangle g g

derive from Rhombus?

 25-42

Points to Consider
To design a Shape inheritance hierarchy
 What are the common operations you want to perform on all Shapes What are the common operations you want to perform on all Shapes
 What other kinds of Shapes might you use in your application?

(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus, (g , , yg , p , q , g ,
Pentagon, …) Circle-Ellipse Square-Rectangle

 Why do you need a Rectangle class as the base class of a Square?
 Can a Square substitute for a Rectangle?
 A Rhombus is four-sided, like a Rectangle, so should Rectangle g g

derive from Rhombus?
 Should you have a base class for all four-sided objects?

 25-42

Points to Consider
To design a Shape inheritance hierarchy
 What are the common operations you want to perform on all Shapes What are the common operations you want to perform on all Shapes
 What other kinds of Shapes might you use in your application?

(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus, (g , , yg , p , q , g ,
Pentagon, …) Circle-Ellipse Square-Rectangle

 Why do you need a Rectangle class as the base class of a Square?
 Can a Square substitute for a Rectangle?
 A Rhombus is four-sided, like a Rectangle, so should Rectangle g g

derive from Rhombus?
 Should you have a base class for all four-sided objects?
 Should you have another base class for all five-sided objects?

 25-42

Points to Consider
To design a Shape inheritance hierarchy
 What are the common operations you want to perform on all Shapes What are the common operations you want to perform on all Shapes
 What other kinds of Shapes might you use in your application?

(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus, (g , , yg , p , q , g ,
Pentagon, …) Circle-Ellipse Square-Rectangle

 Why do you need a Rectangle class as the base class of a Square?
 Can a Square substitute for a Rectangle?
 A Rhombus is four-sided, like a Rectangle, so should Rectangle g g

derive from Rhombus?
 Should you have a base class for all four-sided objects?
 Should you have another base class for all five-sided objects?
 Should you have a general base class for polygons with the number

of sides as an attribute?
 25-42

Points to Consider
To design a Shape inheritance hierarchy
 What are the common operations you want to perform on all Shapes What are the common operations you want to perform on all Shapes
 What other kinds of Shapes might you use in your application?

(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus, (g , , yg , p , q , g ,
Pentagon, …) Circle-Ellipse Square-Rectangle

 Why do you need a Rectangle class as the base class of a Square?
 Can a Square substitute for a Rectangle?
 A Rhombus is four-sided, like a Rectangle, so should Rectangle g g

derive from Rhombus?
 Should you have a base class for all four-sided objects?
 Should you have another base class for all five-sided objects?
 Should you have a general base class for polygons with the number

of sides as an attribute?
 Will your program perform geometric searches to identify objects?25-42

Summaryy

25-43

Summaryy

Undergraduate
m_advisor
m tuitionm_tuition

25-43

Summaryy

Graduate
m_stipend

Undergraduate
m_advisor
m tuitionm_tuition

25-43

Summaryy

StudentStudent
m_home
m_courses

Graduate
m_stipend

Undergraduate
m_advisor
m tuitionm_tuition

25-43

Summaryy

StudentStudent
m_home
m_courses

Graduate
m_stipend

Undergraduate
m_advisor
m tuitionm_tuition

25-43

Summaryy

StudentStudent
m_home
m_courses

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuitionm_tuition

25-43

Summaryy

StudentStudent
m_home
m_courses

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuitionm_tuition

ResidenceManager
m residencesm_residences

25-43

Summaryy

StudentStudent
m_home
m_courses

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuition

Staff
m_wage
m_jobm_tuition _j

ResidenceManager
m residencesm_residences

25-43

Summaryy

StudentStudent
m_home
m_courses

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuition

Staff
m_wage
m_jobm_tuition _j

ResidenceManager
m residencesm_residences

25-43

Summaryy

Student EmployeeStudent
m_home
m_courses

Employee
m_office
m_department

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuition

Staff
m_wage
m_jobm_tuition _j

ResidenceManager
m residencesm_residences

25-43

Summaryy

Student EmployeeStudent
m_home
m_courses

Employee
m_office
m_department

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuition

Staff
m_wage
m_jobm_tuition _j

ResidenceManager
m residencesm_residences

25-43

Summaryy
Person

m_age
m_name

Student EmployeeStudent
m_home
m_courses

Employee
m_office
m_department

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuition

Staff
m_wage
m_jobm_tuition _j

ResidenceManager
m residencesm_residences

25-43

Summaryy
Person

m_age
m_name

Student EmployeeStudent
m_home
m_courses

Employee
m_office
m_department

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuition

Staff
m_wage
m_jobm_tuition _j

ResidenceManager
m residencesm_residences

25-43

Summaryy
Person

m_age
m_name

Student Employee

Course

Student
m_home
m_courses

Employee
m_office
m_department

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuition

Staff
m_wage
m_jobm_tuition _j

ResidenceManager
m residencesm_residences

25-43

Summaryy
Person

m_age Departmentm_name

Student Employee

Department
Course

Student
m_home
m_courses

Employee
m_office
m_department

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuition

Staff
m_wage
m_jobm_tuition _j

ResidenceManager
m residencesm_residences

25-43

Summaryy
Person

m_age Departmentm_name

Student Employee

Department
Course

Student
m_home
m_courses

Employee
m_office
m_department

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuition

Staff
m_wage
m_jobm_tuition _j

ResidenceManager
m residences

CampusResidence

m_residences

25-43

m_rent
m_roomMates

Summaryy
Person

m_age Departmentm_name

Student Employee

Department
Course

Student
m_home
m_courses

Employee
m_office
m_department

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuition

Staff
m_wage
m_jobm_tuition _j

ResidenceManager
m residences

OfficeCampusResidence

m_residences

25-43

m_IPAddressm_rent
m_roomMates

Summaryy
Person

m_age Departmentm_name

Student Employee

Department
Course

Student
m_home
m_courses

Employee
m_office
m_department

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuition

Staff
m_wage
m_job

Residence
m_location
m phoneExt

m_tuition _j

ResidenceManager
m residences

OfficeCampusResidence

m_phoneExtm_residences

25-43

m_IPAddressm_rent
m_roomMates

Summaryy
Person

m_age Departmentm_name

Student Employee

Department
Course

Student
m_home
m_courses

Employee
m_office
m_department

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuition

Staff
m_wage
m_job

Residence
m_location
m phoneExt

m_tuition _j

ResidenceManager
m residences

OfficeCampusResidence

m_phoneExtm_residences

25-43

m_IPAddressm_rent
m_roomMates

Summaryy
Person

m_age Departmentm_name

Student Employee

Department
Course

Student
m_home
m_courses

Employee
m_office
m_department

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuition

Staff
m_wage
m_job

Residence
m_location
m phoneExt

m_tuition _j

ResidenceManager
m residences

OfficeCampusResidence

m_phoneExtm_residences

25-43

m_IPAddressm_rent
m_roomMates

Summaryy
Person

m_age Departmentm_name

Student Employee

Department
Course

Student
m_home
m_courses

Employee
m_office
m_department

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuition

Staff
m_wage
m_job

Residence
m_location
m phoneExt

m_tuition _j

ResidenceManager
m residences

OfficeCampusResidence

m_phoneExtm_residences

25-43

m_IPAddressm_rent
m_roomMates

Summaryy
Person

m_age Departmentm_name

Student Employee

Department
Course

Student
m_home
m_courses

Employee
m_office
m_department

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuition

Staff
m_wage
m_job

Residence
m_location
m phoneExt

m_tuition _j

ResidenceManager
m residences

OfficeCampusResidence

m_phoneExtm_residences

25-43

m_IPAddressm_rent
m_roomMates

Summaryy
Person

m_age Departmentm_name

Student Employee

Department
Course

Student
m_home
m_courses

Employee
m_office
m_department

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m tuition

Staff
m_wage
m_job

Residence
m_location
m phoneExt

m_tuition _j

ResidenceManager
m residences

OfficeCampusResidence

m_phoneExtm_residences

25-43

m_IPAddressm_rent
m_roomMates

