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Software entities (classes, modules, functions, etc.) 
should be open for extension, but closed for modification.
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 Back to OCP: Did you extend the functionality of the class Student?  
Did you edit student.h or student.cpp?
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Protected Data and Functions
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protected  in your
design derived class and friends of derived 

classes
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 Most of the member functions of the base class are implicitly 

inherited by the derived class except
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Basic Inheritance (cont’d)( )
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Inheritance and Constructors
 Rewrite Student using constructor
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The base class will be fully constructed before the body of the 
derived class constructor is entered
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delete[] m_address;
cout << "In Graduate dtor\n";

}

}
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 In destructing the derived object, the base object is still in scope and 
functioning correctly.
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for every class which you do not define an assignment operatorfor every class which you do not define an assignment operator
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3&4. If  you define Derived& Derived::operator (Derived &rhs) yourself, you have
to call Base::operator=(rhs); in Derived::operator=(Derived) no matter it is  
synthesized or not; otherwise the Base part of the object would not be copied.
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int m_stipend;
};



Layers of Inheritancey
 Let us add a new type of graduate student
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~Student(); p ,
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};
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25-20

int m_stipend;
};
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: Graduate(name, age, stipend) {
m_nationality = new char[strlen(nationality)+1];
strcpy(m_nationality, nationality);

}



Layers of Inheritance (cont’d)y ( )

St d tStudent::Student(char *name, int age) : m age(age) {
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G d t
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}
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F i G d
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: Graduate(name, age, stipend) {
m_nationality = new char[strlen(nationality)+1];
strcpy(m_nationality, nationality);

}



Behavior Changing (Hiding)g g ( g)
 In the previous example, suppose we would like to have a display() 

member function in the Student class that shows the details of a 
Student object on the screen, ex.
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}
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 Note: function signature is exactly the same as in the base class.

cout << His address is  << m_address << .\n ;
}
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can enhance the encapsulation, replacing the 
functionality of trivial accessor functions
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1/2*TwoDimShape::calculateArea()
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 Let us first try inheriting Faculty from Graduate since the two groups 
have so much data in common
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You can spare a data member but cannot
turn off an interface of the base class.This is NOT a good solution!

cout << prof.getStipend();
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“Inheritance SHOULD NOT be designed based on solely 
implementation considerations – eg. code reuse.”
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Is there any redundancy?and use only Person in its place?
 Should Graduate be derived from Undergraduate?
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• If the Office has a clean() method,
The Faculty automatically has a
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Graduate Faculty
clean() method.  What does it mean? 

• What if a faculty has two offices?



Code for Office Solution
class Office: public Person {
public:

Office(char *name int age char address);Office(char name, int age, char address);
~Office()
const char *getAddress() const;

private:
char *m_address;

};

25-34



Code for Office Solution
class Office: public Person {
public:

Office(char *name int age char address);Office(char name, int age, char address);
~Office()
const char *getAddress() const;

private:
char *m_address;

};
class Graduate: public Office {

blipublic:
Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;

private:private:
int m_stipend;

};

25-34



Code for Office Solution
class Office: public Person {
public:

Office(char *name int age char address);Office(char name, int age, char address);
~Office()
const char *getAddress() const;

private:
char *m_address;

};
class Graduate: public Office {

blipublic:
Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;

private:

class Faculty: public Office {

private:
int m_stipend;

};
y p {

public:
Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const;

25-34

const char *getRank() const;
private:

char *m_rank;
};



Code for Office Solution
class Office: public Person {
public:

Office(char *name int age char address);Office(char name, int age, char address);
~Office()
const char *getAddress() const;

private: Poor design!! 
char *m_address;

};
class Graduate: public Office {

bli

g
Problematic!!?

public:
Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;

private:

class Faculty: public Office {

private:
int m_stipend;

};
y p {

public:
Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const;

25-34

const char *getRank() const;
private:

char *m_rank;
};



Final Solution
 Back to our original inheritance design (good design)

Person

G d t F ltU d d t



Graduate FacultyUndergraduate

25-35



Final Solution
 Back to our original inheritance design (good design)

Person

G d t F ltU d d t Offi

 Instead of having Graduate and Faculty inherit from Office, we 

Graduate FacultyUndergraduate Office

store an Office object within each classes

25-35



Final Solution
 Back to our original inheritance design (good design)

Person

G d t F ltU d d t Offi

 Instead of having Graduate and Faculty inherit from Office, we 

Graduate FacultyUndergraduate Office

store an Office object within each classes
 The office class exists separately, without involving any inheritance

 Codes:
class Office {
public:public:

Office(char *address);
~Office();
const char *getAddress() const;
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g
private:

char *m_address;
};



Final Solution (cont’d)( )
class Graduate: public Person {
public:

Graduate(char *name int age int stipend char *address);Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;

private:p
int m_stipend;
Office m_office;

};
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Final Solution (cont’d)( )
class Graduate: public Person {
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Final Solution (cont’d)( )
class Graduate: public Person {
public:

Graduate(char *name int age int stipend char *address);Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;

private: class Faculty: public Personp
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};

class Faculty: public Person
{
public:

Faculty(char *name, int age, char *address, char *rank);
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const char* getAddress() const;
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private:const char* Graduate::

delegation
private:

char *m_rank;
Office m_office;

};

getAddress() const {
return m_office.getAddress();

}
 Note: the data part m_office in Graduate and Faculty is replicated.

However, the code to handle address is reduced to a single
copy i e Office::getAddress() If we want to maintain a single
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copy, i.e. Office::getAddress().  If we want to maintain a single
object for the same office, we can use pointer or reference to
implement m_office.



Further Abstraction
 When the relationships between Graduate or Faculty objects and 

other objects are common we can model their relationships withinother objects are common, we can model their relationships within  
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 If there could be several offices for a certain personnel, the private 
member could be a container, ex. vector<Office> m_offices;
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 The second case is a bad inheritance
even if Undergraduate is internally
identical to Student.
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Faculty

Office
This is referred to as the HAS-A relationship.
It operates in the form of delegation.
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corresponding to its center.  Substitutability: Can a circle be used 
as a point in constructing the four corners of a rectangle? 
corresponding to its centercorresponding to its center.  Substitutability: Can a circle be used 
as a point in constructing the four corners of a rectangle? Can a 
circle be used as the center of another circle?
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note: a pathname IS indeed implemented by a string, but it is a 
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 Should you have a base class for all four-sided objects?
 Should you have another base class for all five-sided objects?
 Should you have a general base class for polygons with the number 

of sides as an attribute?
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Points to Consider
To design a Shape inheritance hierarchy
 What are the common operations you want to perform on all Shapes What are the common operations you want to perform on all Shapes
 What other kinds of Shapes might you use in your application? 

(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus, ( g , , yg , p , q , g ,
Pentagon, …)     Circle-Ellipse    Square-Rectangle

 Why do you need a Rectangle class as the base class of a Square?
 Can a Square substitute for a Rectangle?
 A Rhombus is four-sided, like a Rectangle, so should Rectangle g g

derive from Rhombus?
 Should you have a base class for all four-sided objects?
 Should you have another base class for all five-sided objects?
 Should you have a general base class for polygons with the number 

of sides as an attribute?
 Will your program perform geometric searches to identify objects?25-42
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