
PolymorphismPolymorphism

C++ Obj t O i t d P iC++ Object Oriented Programming
Pei-yih Ting
NTOU CSNTOU CS

26-1

Contents
 Assignment to base / derived types of objects

 Assignment to base / derived types of pointers













26-2



Contents
 Assignment to base / derived types of objects

 Assignment to base / derived types of pointers

 Heterogeneous container and virtual functions











26-2



Contents
 Assignment to base / derived types of objects

 Assignment to base / derived types of pointers

 Heterogeneous container and virtual functions

 Compile-time binding vs. run-time bindingp g g









26-2



Contents
 Assignment to base / derived types of objects

 Assignment to base / derived types of pointers

 Heterogeneous container and virtual functions

 Compile-time binding vs. run-time bindingp g g

 Virtual function vs. overloading







26-2



Contents
 Assignment to base / derived types of objects

 Assignment to base / derived types of pointers

 Heterogeneous container and virtual functions

 Compile-time binding vs. run-time bindingp g g

 Virtual function vs. overloading

 Function resolving and function hiding





26-2



Contents
 Assignment to base / derived types of objects

 Assignment to base / derived types of pointers

 Heterogeneous container and virtual functions

 Compile-time binding vs. run-time bindingp g g

 Virtual function vs. overloading

 Function resolving and function hiding

 Type of polymorphisms Type of polymorphisms



26-2



Contents
 Assignment to base / derived types of objects

 Assignment to base / derived types of pointers

 Heterogeneous container and virtual functions

 Compile-time binding vs. run-time bindingp g g

 Virtual function vs. overloading

 Function resolving and function hiding

 Type of polymorphisms Type of polymorphisms

 Virtual destructors

26-2



Contents
 Assignment to base / derived types of objects

 Assignment to base / derived types of pointers

 Heterogeneous container and virtual functions

 Compile-time binding vs. run-time bindingp g g

 Virtual function vs. overloading

 Function resolving and function hiding

 Type of polymorphisms Type of polymorphisms

 Virtual destructors

26-2

 Double dispatch / Visitor Pattern

Assignment to Base Class Objectg j



 Assume Graduate is derived from Person






 Person







Person

Graduate


26-3

Assignment to Base Class Objectg j

 Assignment from derived class object to base class object is legal
 Assume Graduate is derived from Person
 Assignment from derived class object to base class object is legal

though unusual



 Person







Person

Graduate


26-3

Assignment to Base Class Objectg j

 Assignment from derived class object to base class object is legal
 Assume Graduate is derived from Person
 Assignment from derived class object to base class object is legal

though unusualPerson person("Joe", 19);
Graduate graduate("Michael", 24, 6000, "INS501");
 Person







Person

Graduate


26-3

Assignment to Base Class Objectg j

 Assignment from derived class object to base class object is legal
 Assume Graduate is derived from Person
 Assignment from derived class object to base class object is legal

though unusualPerson person("Joe", 19);
Graduate graduate("Michael", 24, 6000, "INS501");
person display(); Personperson.display();






Output:
Joe is 19 years old.

Person

Graduate


26-3

Assignment to Base Class Objectg j

 Assignment from derived class object to base class object is legal
 Assume Graduate is derived from Person
 Assignment from derived class object to base class object is legal

though unusualPerson person("Joe", 19);
Graduate graduate("Michael", 24, 6000, "INS501");
person display(); Person

Michael is 24 years old

person.display();
person = graduate; // assign
person.display();


Output:
Joe is 19 years old.

Person

Graduate
Michael is 24 years old.



26-3

Assignment to Base Class Objectg j

 Assignment from derived class object to base class object is legal
 Assume Graduate is derived from Person
 Assignment from derived class object to base class object is legal

though unusualPerson person("Joe", 19);
Graduate graduate("Michael", 24, 6000, "INS501");
person display(); Person

Michael is 24 years old

person.display();
person = graduate; // assign
person.display();
Person person2 = graduate; // copy

Output:
Joe is 19 years old.

Person

Graduate
Michael is 24 years old.person2.display();
Michael is 24 years old.

26-3

Assignment to Base Class Objectg j

 Assignment from derived class object to base class object is legal
 Assume Graduate is derived from Person
 Assignment from derived class object to base class object is legal

though unusualPerson person("Joe", 19);
Graduate graduate("Michael", 24, 6000, "INS501");
person display(); Person

Michael is 24 years old

person.display();
person = graduate; // assign
person.display();
Person person2 = graduate; // copy

Output:
Joe is 19 years old.

Person

Graduate
Michael is 24 years old.person2.display();

 What happened: Michael is 24 years old.

26-3

Assignment to Base Class Objectg j

 Assignment from derived class object to base class object is legal
 Assume Graduate is derived from Person
 Assignment from derived class object to base class object is legal

though unusualPerson person("Joe", 19);
Graduate graduate("Michael", 24, 6000, "INS501");
person display(); Person

Michael is 24 years old

person.display();
person = graduate; // assign
person.display();
Person person2 = graduate; // copy

Output:
Joe is 19 years old.

Person

Graduate
Michael is 24 years old.person2.display();

 What happened:
1 A derived object by definition contains everything the base class

Michael is 24 years old.

Person
m name

Graduate
m name

1. A derived object, by definition, contains everything the base class
has plus some extra elements.

m_name
m_age

m_name
m_age
m_stipend
m office

26-3

m_office

Assignment to Base Class Objectg j

 Assignment from derived class object to base class object is legal
 Assume Graduate is derived from Person
 Assignment from derived class object to base class object is legal

though unusualPerson person("Joe", 19);
Graduate graduate("Michael", 24, 6000, "INS501");
person display(); Person

Michael is 24 years old

person.display();
person = graduate; // assign
person.display();
Person person2 = graduate; // copy

Output:
Joe is 19 years old.

Person

Graduate
Michael is 24 years old.person2.display();

 What happened:
1 A derived object by definition contains everything the base class

Michael is 24 years old.

Person
m name

Graduate
m name

1. A derived object, by definition, contains everything the base class
has plus some extra elements.

m_name
m_age

m_name
m_age
m_stipend
m office

26-3

m_office

Assignment to Base Class Objectg j

 Assignment from derived class object to base class object is legal
 Assume Graduate is derived from Person
 Assignment from derived class object to base class object is legal

though unusualPerson person("Joe", 19);
Graduate graduate("Michael", 24, 6000, "INS501");
person display(); Person

Michael is 24 years old

person.display();
person = graduate; // assign
person.display();
Person person2 = graduate; // copy

Output:
Joe is 19 years old.

Person

Graduate
Michael is 24 years old.person2.display();

 What happened:
1 A derived object by definition contains everything the base class

Michael is 24 years old.

Person
m name

Graduate
m name

1. A derived object, by definition, contains everything the base class
has plus some extra elements.

2 The extra elements are lost in the m_name
m_age

m_name
m_age
m_stipend
m office

2. The extra elements are lost in the
assignment.

26-3

m_office

Assignment to Base Class Objectg j

 Assignment from derived class object to base class object is legal
 Assume Graduate is derived from Person
 Assignment from derived class object to base class object is legal

though unusualPerson person("Joe", 19);
Graduate graduate("Michael", 24, 6000, "INS501");
person display(); Person

Michael is 24 years old

person.display();
person = graduate; // assign
person.display();
Person person2 = graduate; // copy

Output:
Joe is 19 years old.

Person

Graduate
Michael is 24 years old.person2.display();

 What happened:
1 A derived object by definition contains everything the base class

Michael is 24 years old.

Person
m name

Graduate
m name

1. A derived object, by definition, contains everything the base class
has plus some extra elements.

2 The extra elements are lost in the m_name
m_age

m_name
m_age
m_stipend
m office If the base class has implemented the

2. The extra elements are lost in the
assignment.

26-3

m_officep
assignment operator or the copy ctor,
they will be called.

Assignment to Derived Class Objectg j
 Assignment from base class object to derived class object is illegal





26-4

Assignment to Derived Class Objectg j
 Assignment from base class object to derived class object is illegal

d t // i tgraduate = person; // assignment


26-4

Assignment to Derived Class Objectg j
 Assignment from base class object to derived class object is illegal

d t // i tgraduate = person; // assignment
Graduate graduate2 = person; // copy ctor

26-4

Assignment to Derived Class Objectg j
 Assignment from base class object to derived class object is illegal

d t // i tgraduate = person; // assignment
Graduate graduate2 = person; // copy ctor

26-4

Assignment to Derived Class Objectg j
 Assignment from base class object to derived class object is illegal

d t // i tgraduate = person; // assignment
Graduate graduate2 = person; // copy ctor

error C2679: binary '=' : no operator defined which takes a right-hand operand
of type 'class Person' (or there is no acceptable conversion)

26-4

Assignment to Derived Class Objectg j
 Assignment from base class object to derived class object is illegal

d t // i tgraduate = person; // assignment
Graduate graduate2 = person; // copy ctor

error C2679: binary '=' : no operator defined which takes a right-hand operand
of type 'class Person' (or there is no acceptable conversion)

 What would happen if the above is allowed?

26-4

Assignment to Derived Class Objectg j
 Assignment from base class object to derived class object is illegal

d t // i tgraduate = person; // assignment
Graduate graduate2 = person; // copy ctor

error C2679: binary '=' : no operator defined which takes a right-hand operand
of type 'class Person' (or there is no acceptable conversion)

Person

 What would happen if the above is allowed?

m_name
m_age

26-4

Assignment to Derived Class Objectg j
 Assignment from base class object to derived class object is illegal

d t // i tgraduate = person; // assignment
Graduate graduate2 = person; // copy ctor

error C2679: binary '=' : no operator defined which takes a right-hand operand
of type 'class Person' (or there is no acceptable conversion)

PersonGraduate

 What would happen if the above is allowed?

m_name
m_age

m_name
m_age
m stipendm_stipend
m_office

26-4

Assignment to Derived Class Objectg j
 Assignment from base class object to derived class object is illegal

d t // i tgraduate = person; // assignment
Graduate graduate2 = person; // copy ctor

error C2679: binary '=' : no operator defined which takes a right-hand operand
of type 'class Person' (or there is no acceptable conversion)

PersonGraduate

 What would happen if the above is allowed?

m_name
m_age

m_name
m_age
m stipendm_stipend
m_office

26-4

Assignment to Derived Class Objectg j
 Assignment from base class object to derived class object is illegal

d t // i tgraduate = person; // assignment
Graduate graduate2 = person; // copy ctor

error C2679: binary '=' : no operator defined which takes a right-hand operand
of type 'class Person' (or there is no acceptable conversion)

PersonGraduate

 What would happen if the above is allowed?

The extra fields in the derived class
m_name
m_age

m_name
m_age
m stipend ?

The extra fields in the derived class
would become uninitialized.

m_stipend
m_office

?
?

26-4

Assignment to Derived Class Objectg j
 Assignment from base class object to derived class object is illegal

d t // i tgraduate = person; // assignment
Graduate graduate2 = person; // copy ctor

error C2679: binary '=' : no operator defined which takes a right-hand operand
of type 'class Person' (or there is no acceptable conversion)

PersonGraduate

 What would happen if the above is allowed?

The extra fields in the derived class
m_name
m_age

m_name
m_age
m stipend ?

The extra fields in the derived class
would become uninitialized.

m_stipend
m_office

?
? Summary

26-4

Assignment to Derived Class Objectg j
 Assignment from base class object to derived class object is illegal

d t // i tgraduate = person; // assignment
Graduate graduate2 = person; // copy ctor

error C2679: binary '=' : no operator defined which takes a right-hand operand
of type 'class Person' (or there is no acceptable conversion)

PersonGraduate

 What would happen if the above is allowed?

The extra fields in the derived class
m_name
m_age

m_name
m_age
m stipend ?

The extra fields in the derived class
would become uninitialized.

m_stipend
m_office

?
?

“derived to base” only loses data (allowed)

 Summary

26-4

derived to base only loses data (allowed).

Assignment to Derived Class Objectg j
 Assignment from base class object to derived class object is illegal

d t // i tgraduate = person; // assignment
Graduate graduate2 = person; // copy ctor

error C2679: binary '=' : no operator defined which takes a right-hand operand
of type 'class Person' (or there is no acceptable conversion)

PersonGraduate

 What would happen if the above is allowed?

The extra fields in the derived class
m_name
m_age

m_name
m_age
m stipend ?

The extra fields in the derived class
would become uninitialized.

m_stipend
m_office

?
?

“derived to base” only loses data (allowed)

 Summary

26-4

derived to base only loses data (allowed).
“base to derived” leaves state undefined (forbidden).

Assignment to Base Class Pointerg
 Assignment from a derived pointer to a base class pointer is legal











26-5

Assignment to Base Class Pointerg
 Assignment from a derived pointer to a base class pointer is legal

P * P ("J " 19)Person *person = new Person("Joe", 19);
Graduate *graduate = new Graduate("Michael", 24, 6000, "INS501");






26-5

Assignment to Base Class Pointerg
 Assignment from a derived pointer to a base class pointer is legal

P * P ("J " 19)Person *person = new Person("Joe", 19);
Graduate *graduate = new Graduate("Michael", 24, 6000, "INS501");






d
Graduate

graduate

Person
m_name
m age

26-5

_ g
m_stipend
m_office

Assignment to Base Class Pointerg
 Assignment from a derived pointer to a base class pointer is legal

P * P ("J " 19)Person *person = new Person("Joe", 19);
Graduate *graduate = new Graduate("Michael", 24, 6000, "INS501");
persondisplay();person display();




Output:
Joe is 19 years old.

d
Graduate

graduate

Person
m_name
m age

26-5

_ g
m_stipend
m_office

Assignment to Base Class Pointerg
 Assignment from a derived pointer to a base class pointer is legal

P * P ("J " 19)Person *person = new Person("Joe", 19);
Graduate *graduate = new Graduate("Michael", 24, 6000, "INS501");
persondisplay();person display();
person = graduate;


Output:
Joe is 19 years old.

d
Graduate

graduate

person
Person
m_name
m age

26-5

_ g
m_stipend
m_office

Assignment to Base Class Pointerg
 Assignment from a derived pointer to a base class pointer is legal

P * P ("J " 19)Person *person = new Person("Joe", 19);
Graduate *graduate = new Graduate("Michael", 24, 6000, "INS501");
persondisplay();

Michael is 24 years old.

person display();
person = graduate;
persondisplay();

Output:
Joe is 19 years old.
Michael is 24 years old.

d
Graduate

graduate

person
Person
m_name
m age

26-5

_ g
m_stipend
m_office

Assignment to Base Class Pointerg
 Assignment from a derived pointer to a base class pointer is legal

P * P ("J " 19)Person *person = new Person("Joe", 19);
Graduate *graduate = new Graduate("Michael", 24, 6000, "INS501");
persondisplay();

Michael is 24 years old.

person display();
person = graduate;
persondisplay();

Output:
Joe is 19 years old.
Michael is 24 years old.

d

 What happened

Graduate

graduate

person
Person
m_name
m age

26-5

_ g
m_stipend
m_office

Assignment to Base Class Pointerg
 Assignment from a derived pointer to a base class pointer is legal

P * P ("J " 19)Person *person = new Person("Joe", 19);
Graduate *graduate = new Graduate("Michael", 24, 6000, "INS501");
persondisplay();

Michael is 24 years old.

person display();
person = graduate;
persondisplay();

Output:
Joe is 19 years old.
Michael is 24 years old.

d1 person display() calls Person::display() that shows the
 What happened

Graduate

graduate

person

1. persondisplay() calls Person::display() that shows the
private data of the base part of either
Person or Graduate object Person

m_name
m age

Person or Graduate object

26-5

_ g
m_stipend
m_office

Assignment to Base Class Pointerg
 Assignment from a derived pointer to a base class pointer is legal

P * P ("J " 19)Person *person = new Person("Joe", 19);
Graduate *graduate = new Graduate("Michael", 24, 6000, "INS501");
persondisplay();

Michael is 24 years old.

person display();
person = graduate;
persondisplay();

Output:
Joe is 19 years old.
Michael is 24 years old.

d1 person display() calls Person::display() that shows the
 What happened

Graduate

graduate

person

1. persondisplay() calls Person::display() that shows the
private data of the base part of either
Person or Graduate object Person

m_name
m age

Person or Graduate object
2. Person::display() cannot access

Graduate::m stipend and

26-5

_ g
m_stipend
m_office

Graduate::m_stipend and
Graduate::m_office

Assignment to Derived Class Pointerg
 Assignment from a base pointer to a derived pointer is evil, but you

certainly can coerce it with an explicit type casty p yp





26-6

Assignment to Derived Class Pointerg
 Assignment from a base pointer to a derived pointer is evil, but you

certainly can coerce it with an explicit type casty p yp
Person *person = new Person("Joe", 19);
Graduate *grad1, *grad2=new Graduate("Michael", 24, 6000, "INS501");




26-6

Assignment to Derived Class Pointerg
 Assignment from a base pointer to a derived pointer is evil, but you

certainly can coerce it with an explicit type casty p yp
Person *person = new Person("Joe", 19);
Graduate *grad1, *grad2=new Graduate("Michael", 24, 6000, "INS501");
grad1 = (Graduate *) person;grad1 = (Graduate *) person;


26-6

Assignment to Derived Class Pointerg
 Assignment from a base pointer to a derived pointer is evil, but you

certainly can coerce it with an explicit type casty p yp

O t t

Person *person = new Person("Joe", 19);
Graduate *grad1, *grad2=new Graduate("Michael", 24, 6000, "INS501");
grad1 = (Graduate *) person; Output

Joe is 19 years old.
He is a graduate student.
H h i d f 384584985 d ll

grad1 = (Graduate *) person;
grad1display();

He has a stipend of –384584985 dollars.
His address is 324rekj8

26-6

Assignment to Derived Class Pointerg
 Assignment from a base pointer to a derived pointer is evil, but you

certainly can coerce it with an explicit type casty p yp

O t t

Person *person = new Person("Joe", 19);
Graduate *grad1, *grad2=new Graduate("Michael", 24, 6000, "INS501");
grad1 = (Graduate *) person; Output

Joe is 19 years old.
He is a graduate student.
H h i d f 384584985 d ll

 This is called a downcast.

grad1 = (Graduate *) person;
grad1display();

He has a stipend of –384584985 dollars.
His address is 324rekj8

26-6

Assignment to Derived Class Pointerg
 Assignment from a base pointer to a derived pointer is evil, but you

certainly can coerce it with an explicit type casty p yp

O t t

Person *person = new Person("Joe", 19);
Graduate *grad1, *grad2=new Graduate("Michael", 24, 6000, "INS501");
grad1 = (Graduate *) person; Output

Joe is 19 years old.
He is a graduate student.
H h i d f 384584985 d ll

 This is called a downcast.

grad1 = (Graduate *) person;
grad1display();

He has a stipend of –384584985 dollars.
His address is 324rekj8

Downcast is dangerous. It is
correct only when the object

i t d b i bj tpointed by person is an object
of class Graduate.

26-6

Assignment to Derived Class Pointerg
 Assignment from a base pointer to a derived pointer is evil, but you

certainly can coerce it with an explicit type casty p yp

O t t

Person *person = new Person("Joe", 19);
Graduate *grad1, *grad2=new Graduate("Michael", 24, 6000, "INS501");
grad1 = (Graduate *) person; Output

Joe is 19 years old.
He is a graduate student.
H h i d f 384584985 d ll

 This is called a downcast.

grad1 = (Graduate *) person;
grad1display();

He has a stipend of –384584985 dollars.
His address is 324rekj8

Downcast is dangerous. It is
correct only when the object

i t d b i bj t
ex. person = grad2;

…
grad1 = (Graduate *) person;

pointed by person is an object
of class Graduate.

26-6

Assignment to Derived Class Pointerg
 Assignment from a base pointer to a derived pointer is evil, but you

certainly can coerce it with an explicit type casty p yp

O t t

Person *person = new Person("Joe", 19);
Graduate *grad1, *grad2=new Graduate("Michael", 24, 6000, "INS501");
grad1 = (Graduate *) person; Output

Joe is 19 years old.
He is a graduate student.
H h i d f 384584985 d ll

 This is called a downcast.

grad1 = (Graduate *) person;
grad1display();

He has a stipend of –384584985 dollars.
His address is 324rekj8

Downcast is dangerous. It is
correct only when the object

i t d b i bj t
ex. person = grad2;

…
grad1 = (Graduate *) person; What happened:

pointed by person is an object
of class Graduate.

 What happened:

26-6

Assignment to Derived Class Pointerg
 Assignment from a base pointer to a derived pointer is evil, but you

certainly can coerce it with an explicit type casty p yp

O t t

Person *person = new Person("Joe", 19);
Graduate *grad1, *grad2=new Graduate("Michael", 24, 6000, "INS501");
grad1 = (Graduate *) person; Output

Joe is 19 years old.
He is a graduate student.
H h i d f 384584985 d ll

 This is called a downcast.

grad1 = (Graduate *) person;
grad1display();

grad1

He has a stipend of –384584985 dollars.
His address is 324rekj8

Downcast is dangerous. It is
correct only when the object

i t d b i bj t
Person
m name

grad1
ex. person = grad2;

…
grad1 = (Graduate *) person; What happened:

pointed by person is an object
of class Graduate.

m_name
m_age

m_stipend
ffi

?
?

 What happened:

26-6

m_office ?

Assignment to Derived Class Pointerg
 Assignment from a base pointer to a derived pointer is evil, but you

certainly can coerce it with an explicit type casty p yp

O t t

Person *person = new Person("Joe", 19);
Graduate *grad1, *grad2=new Graduate("Michael", 24, 6000, "INS501");
grad1 = (Graduate *) person; Output

Joe is 19 years old.
He is a graduate student.
H h i d f 384584985 d ll

 This is called a downcast.

grad1 = (Graduate *) person;
grad1display();

grad1

He has a stipend of –384584985 dollars.
His address is 324rekj8

Downcast is dangerous. It is
correct only when the object

i t d b i bj t
Person
m name

grad1
ex. person = grad2;

…
grad1 = (Graduate *) person; What happened:

pointed by person is an object
of class Graduate.

m_name
m_age

m_stipend
ffi

?
?

grad1display() calls Graduate::display(), which
accesses m_name, m_age, m_stipend, and m_office to

 What happened:

26-6

m_office ?display them, but the latter two fields do not exist for
a Person object

Assignment to Derived Class Pointerg
 Assignment from a base pointer to a derived pointer is evil, but you

certainly can coerce it with an explicit type casty p yp

O t t

Person *person = new Person("Joe", 19);
Graduate *grad1, *grad2=new Graduate("Michael", 24, 6000, "INS501");
grad1 = (Graduate *) person; Output

Joe is 19 years old.
He is a graduate student.
H h i d f 384584985 d ll

 This is called a downcast.

grad1 = (Graduate *) person;
grad1display();

grad1

He has a stipend of –384584985 dollars.
His address is 324rekj8

Downcast is dangerous. It is
correct only when the object

i t d b i bj t
Person
m name

grad1
ex. person = grad2;

…
grad1 = (Graduate *) person; What happened:

pointed by person is an object
of class Graduate.

m_name
m_age

m_stipend
ffi

?
?

grad1display() calls Graduate::display(), which
accesses m_name, m_age, m_stipend, and m_office to

 What happened:

26-6

m_office ?
grad1=dynamic_cast<Graduate *> person; //grad1 will be 0

display them, but the latter two fields do not exist for
a Person object

Heterogeneous Containerg
 We would like to store all types of objects in a single database/array.

26-7

Heterogeneous Containerg
 We would like to store all types of objects in a single database/array.

Person *database[3];Person database[3];
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron" 34 "Gates 199" "associate professor");

database[2] = new Faculty(Ron , 34, Gates 199 , associate professor);

26-7

Heterogeneous Containerg
 We would like to store all types of objects in a single database/array.

Person *database[3];Person database[3];
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron" 34 "Gates 199" "associate professor");

database[2] = new Faculty(Ron , 34, Gates 199 , associate professor);

Output:for (int i=0; i<3; i++)
database[i]->display();

26-7

Heterogeneous Containerg
 We would like to store all types of objects in a single database/array.

Person *database[3];Person database[3];
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron" 34 "Gates 199" "associate professor");

Bob is 18 years old.

database[2] = new Faculty(Ron , 34, Gates 199 , associate professor);

Output:for (int i=0; i<3; i++)
database[i]->display();

26-7

Heterogeneous Containerg
 We would like to store all types of objects in a single database/array.

Person *database[3];Person database[3];
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron" 34 "Gates 199" "associate professor");

Bob is 18 years old.

database[2] = new Faculty(Ron , 34, Gates 199 , associate professor);

Output:for (int i=0; i<3; i++)
database[i]->display();

Michael is 25 years old.

26-7

Heterogeneous Containerg
 We would like to store all types of objects in a single database/array.

Person *database[3];Person database[3];
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron" 34 "Gates 199" "associate professor");

Bob is 18 years old.

database[2] = new Faculty(Ron , 34, Gates 199 , associate professor);

Output:for (int i=0; i<3; i++)
database[i]->display();

Michael is 25 years old.
Ron is 34 years old.

26-7

Heterogeneous Containerg
 We would like to store all types of objects in a single database/array.

Person *database[3];Person database[3];
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron" 34 "Gates 199" "associate professor");

Bob is 18 years old.

database[2] = new Faculty(Ron , 34, Gates 199 , associate professor);

Output:for (int i=0; i<3; i++)
database[i]->display();

Michael is 25 years old.
Ron is 34 years old. What is called by the above code

is always Person::display()is always Person::display()

26-7

Heterogeneous Containerg
 We would like to store all types of objects in a single database/array.

Person *database[3];Person database[3];
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron" 34 "Gates 199" "associate professor");

Bob is 18 years old.

database[2] = new Faculty(Ron , 34, Gates 199 , associate professor);

Output:for (int i=0; i<3; i++)
database[i]->display();

Michael is 25 years old.
Ron is 34 years old. What is called by the above code

is always Person::display()
 What is called by the above code

is always Person::display() which shows only the base part of eachis always Person::display()is always Person::display() which shows only the base part of each
object

26-7

Heterogeneous Containerg
 We would like to store all types of objects in a single database/array.

Person *database[3];Person database[3];
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron" 34 "Gates 199" "associate professor");

Bob is 18 years old.

database[2] = new Faculty(Ron , 34, Gates 199 , associate professor);

Output:for (int i=0; i<3; i++)
database[i]->display();

Michael is 25 years old.
Ron is 34 years old. What is called by the above code

is always Person::display()
 What is called by the above code

is always Person::display() which shows only the base part of each
 What is called by the above code

is always Person::display() which shows only the base part of eachis always Person::display()is always Person::display() which shows only the base part of each
object
is always Person::display() which shows only the base part of each
object instead of the display() of a derived class which shows all
detail information of the derived class.

26-7

Heterogeneous Containerg
 We would like to store all types of objects in a single database/array.

Person *database[3];Person database[3];
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron" 34 "Gates 199" "associate professor");

Bob is 18 years old.

database[2] = new Faculty(Ron , 34, Gates 199 , associate professor);

Output:for (int i=0; i<3; i++)
database[i]->display();

Michael is 25 years old.
Ron is 34 years old. What is called by the above code

is always Person::display()
 What is called by the above code

is always Person::display() which shows only the base part of each
 What is called by the above code

is always Person::display() which shows only the base part of eachis always Person::display()is always Person::display() which shows only the base part of each
object
is always Person::display() which shows only the base part of each
object instead of the display() of a derived class which shows all
detail information of the derived class.

Note: in the above program, we can use static object array Person database[3]; as
well, the printed results would be the same, but what it really saved differ.

26-7

Heterogeneous Containerg
 We would like to store all types of objects in a single database/array.

Person *database[3];Person database[3];
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron" 34 "Gates 199" "associate professor");

Bob is 18 years old.

database[2] = new Faculty(Ron , 34, Gates 199 , associate professor);

Output:for (int i=0; i<3; i++)
database[i]->display();

Michael is 25 years old.
Ron is 34 years old. What is called by the above code

is always Person::display()
 What is called by the above code

is always Person::display() which shows only the base part of each
 What is called by the above code

is always Person::display() which shows only the base part of eachis always Person::display()is always Person::display() which shows only the base part of each
object
is always Person::display() which shows only the base part of each
object instead of the display() of a derived class which shows all
detail information of the derived class.

Note: in the above program, we can use static object array Person database[3]; as
well, the printed results would be the same, but what it really saved differ.

26-7

 Is there a way that can make the above code display all detail
information of every derived class in a uniform way?

A Solution with Data Tagg
 Create an enumerated type for each base type:

26-8

A Solution with Data Tagg
 Create an enumerated type for each base type:

enum ObjectType {undergrad, grad, professor};j yp { g g p }

26-8

A Solution with Data Tagg
 Create an enumerated type for each base type:

enum ObjectType {undergrad, grad, professor};j yp { g g p }
 Add a tag of this type to the base class

26-8

A Solution with Data Tagg
 Create an enumerated type for each base type:

enum ObjectType {undergrad, grad, professor};j yp { g g p }
 Add a tag of this type to the base class

class Person {
public:public:

Person();

~Person();
Person(char *name, int age);

void display() const;
private:

char *m name;char m_name;
int m_age;

};

26-8

A Solution with Data Tagg
 Create an enumerated type for each base type:

enum ObjectType {undergrad, grad, professor};j yp { g g p }
 Add a tag of this type to the base class

class Person {
public:public:

Person();

~Person();
Person(char *name, int age);

void display() const;
private:

char *m name;char m_name;
int m_age;

};
ObjectType m_typeTag;

26-8

A Solution with Data Tagg
 Create an enumerated type for each base type:

enum ObjectType {undergrad, grad, professor};j yp { g g p }
 Add a tag of this type to the base class

class Person {
public:public:

Person();

~Person();
Person(char *name, int age, ObjectType typeTag);Person(char *name, int age);

void display() const;
private:

char *m name;char m_name;
int m_age;

};
ObjectType m_typeTag;

26-8

A Solution with Data Tagg
 Create an enumerated type for each base type:

enum ObjectType {undergrad, grad, professor};j yp { g g p }
 Add a tag of this type to the base class

class Person {
public:public:

Person();

~Person();
Person(char *name, int age, ObjectType typeTag);Person(char *name, int age);

void display() const;
private:

char *m name;

ObjectType getType();

char m_name;
int m_age;

};
ObjectType m_typeTag;

26-8

A Solution with Data Tagg
 Create an enumerated type for each base type:

enum ObjectType {undergrad, grad, professor};j yp { g g p }
 Add a tag of this type to the base class

class Person {
public:public:

Person();

~Person();
Person(char *name, int age, ObjectType typeTag);Person(char *name, int age);

Undergraduate::Undergraduate(…):
Person(…,undergrad)

{…}

void display() const;
private:

char *m name;

ObjectType getType();

{ }char m_name;
int m_age;

};
ObjectType m_typeTag;

26-8

A Solution with Data Tagg
 Create an enumerated type for each base type:

enum ObjectType {undergrad, grad, professor};j yp { g g p }
 Add a tag of this type to the base class

class Person {
public:public:

Person();

~Person();
Person(char *name, int age, ObjectType typeTag);Person(char *name, int age);

Undergraduate::Undergraduate(…):
Person(…,undergrad)

{…}

void display() const;
private:

char *m name;

ObjectType getType();

{ }char m_name;
int m_age;

};
ObjectType m_typeTag;

 Make the necessary changes in the constructor

26-8

A Solution with Data Tagg
 Create an enumerated type for each base type:

enum ObjectType {undergrad, grad, professor};j yp { g g p }
 Add a tag of this type to the base class

class Person {
public:public:

Person();

~Person();
Person(char *name, int age, ObjectType typeTag);Person(char *name, int age);

Undergraduate::Undergraduate(…):
Person(…,undergrad)

{…}

void display() const;
private:

char *m name;

ObjectType getType();

{ }char m_name;
int m_age;

};
ObjectType m_typeTag;

Person::Person(char *name, int age, ObjectType typeTag)
: m age(age), m typeTag(typeTag) {

 Make the necessary changes in the constructor

26-8

_ g (g), _ yp g(yp g) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

}

A Solution with Data Tag (Cont’d)g ()
Person *database[3], *temp;
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "Gates 199", "associate professor");

26-75

A Solution with Data Tag (Cont’d)g ()
Person *database[3], *temp;
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "Gates 199", "associate professor");
for (int i=0; i<3; i++) {(; ;) {



















26-75



}

A Solution with Data Tag (Cont’d)g ()
Person *database[3], *temp;
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "Gates 199", "associate professor");
for (int i=0; i<3; i++) {(; ;) {

temp = database[i];
switch (tempgetType()) {

















26-75

}
}

A Solution with Data Tag (Cont’d)g ()
Person *database[3], *temp;
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "Gates 199", "associate professor");
for (int i=0; i<3; i++) {(; ;) {

temp = database[i];
switch (tempgetType()) {
case undergrad:case undergrad:

((Undergraduate *) temp)display();
break;











26-75

}
}

A Solution with Data Tag (Cont’d)g ()
Person *database[3], *temp;
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "Gates 199", "associate professor");
for (int i=0; i<3; i++) {(; ;) {

temp = database[i];
switch (tempgetType()) {
case undergrad:case undergrad:

((Undergraduate *) temp)display();
break;

case grad:case grad:
((Graduate *) temp)display();
break;





26-75

}
}

A Solution with Data Tag (Cont’d)g ()
Person *database[3], *temp;
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "Gates 199", "associate professor");
for (int i=0; i<3; i++) {(; ;) {

temp = database[i];
switch (tempgetType()) {
case undergrad:case undergrad:

((Undergraduate *) temp)display();
break;

case grad:case grad:
((Graduate *) temp)display();
break;

fcase professor:
((Faculty *) temp)display();
break;

26-75

}
}

A Solution with Data Tag (Cont’d)g ()
Person *database[3], *temp;
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "Gates 199", "associate professor");
for (int i=0; i<3; i++) {(; ;) {

temp = database[i];
switch (tempgetType()) {
case undergrad:

Using code to select code
case undergrad:

((Undergraduate *) temp)display();
break;

case grad:case grad:
((Graduate *) temp)display();
break;

fcase professor:
((Faculty *) temp)display();
break;

26-75

}
}

A Solution with Data Tag (Cont’d)g ()
Person *database[3], *temp;
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "Gates 199", "associate professor");
for (int i=0; i<3; i++) { evil(; ;) {

temp = database[i];
switch (tempgetType()) {
case undergrad:

Using code to select codeDowncast is the
“goto” for OOP!!

case undergrad:
((Undergraduate *) temp)display();
break;

case grad:case grad:
((Graduate *) temp)display();
break;

fcase professor:
((Faculty *) temp)display();
break;

26-75

}
}

A Solution with Data Tag (Cont’d)g ()
Person *database[3], *temp;
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "Gates 199", "associate professor");
for (int i=0; i<3; i++) { evil(; ;) {

temp = database[i];
switch (tempgetType()) {
case undergrad:

Using code to select codeDowncast is the
“goto” for OOP!!

case undergrad:
((Undergraduate *) temp)display();
break;

case grad:case grad:
((Graduate *) temp)display();
break;

fcase professor:
((Faculty *) temp)display();
break;

26-75

}
} This is a segment of code not satisfying open-closed principle.

A Solution with Data Tag (Cont’d)g ()
Person *database[3], *temp;
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "Gates 199", "associate professor");
for (int i=0; i<3; i++) { evil(; ;) {

temp = database[i];
switch (tempgetType()) {
case undergrad:

Using code to select codeDowncast is the
“goto” for OOP!!

case undergrad:
((Undergraduate *) temp)display();
break;

case grad:case grad:
((Graduate *) temp)display();
break;

fcase professor:
((Faculty *) temp)display();
break;

26-75

}
} This is a segment of code not satisfying open-closed principle.

Usually, this is avoided with the “strategy” pattern.

A Solution with Data Tag (Cont’d)g ()
Person *database[3], *temp;
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "Gates 199", "associate professor");
for (int i=0; i<3; i++) { evil(; ;) {

temp = database[i];
switch (tempgetType()) {
case undergrad:

Using code to select codeDowncast is the
“goto” for OOP!!

case undergrad:
((Undergraduate *) temp)display();
break;

case grad:
// RTTI
if (dynamic cast<Undergraduate*>(temp))

another way to implement w/o tags

case grad:
((Graduate *) temp)display();
break;

f

if (dynamic_cast<Undergraduate >(temp))
((Undergraduate*)temp)->display();

else if (dynamic_cast<Graduate*>(temp))
((Graduate*)temp)->display();case professor:

((Faculty *) temp)display();
break;

((Graduate)temp) display();
else if (dynamic_cast<Faculty*>(temp))

((Faculty*)temp)->display();

26-75

}
} This is a segment of code not satisfying open-closed principle.

Usually, this is avoided with the “strategy” pattern.

Solution with Virtual Function
 Declare the function as virtual in the

base classbase class
























26-10



Solution with Virtual Function
 Declare the function as virtual in the

base classbase class
class Person {
public:

Person();
Person(char *name int age);Person(char *name, int age);
~Person();

private:
h *char *m_name;

int m_age;
};











26-10



Solution with Virtual Function
 Declare the function as virtual in the

base classbase class
class Person {
public:

Person();
Person(char *name int age);Person(char *name, int age);
~Person();
virtual void display() const;

private:
h *char *m_name;

int m_age;
};











26-10



Solution with Virtual Function
 Declare the function as virtual in the

base classbase class
class Person {
public:

Person();
Person(char *name int age);Person(char *name, int age);
~Person();
virtual void display() const;

private:
h *char *m_name;

int m_age;
};

 Invoke indirectly through base class pointer or reference










26-10



Solution with Virtual Function
 Declare the function as virtual in the

base classbase class
class Person {
public:

Person();
Person(char *name int age);Person(char *name, int age);
~Person();
virtual void display() const;

private:
h *char *m_name;

int m_age;
};

 Invoke indirectly through base class pointer or reference
Person *database[3];
database[0] = new Undergraduate("Bob", 18);[] g (,);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "INS512", "associate professor");


26-10



Solution with Virtual Function
 Declare the function as virtual in the

base classbase class
class Person {
public:

Person();
Person(char *name int age);Person(char *name, int age);
~Person();
virtual void display() const;

private:
h *char *m_name;

int m_age;
};

 Invoke indirectly through base class pointer or reference
Person *database[3];
database[0] = new Undergraduate("Bob", 18);[] g (,);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "INS512", "associate professor");
for (int i=0; i<3; i++)

26-10

database[i]display();

Solution with Virtual Function
 Declare the function as virtual in the

base classbase class
class Person {
public:

Person();
Person(char *name int age);Person(char *name, int age);
~Person();
virtual void display() const;

private:
h *char *m_name;

int m_age;
};

 Invoke indirectly through base class pointer or reference
Person *database[3];
database[0] = new Undergraduate("Bob", 18);[] g (,);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "INS512", "associate professor");
for (int i=0; i<3; i++)

26-10or equivalently (*database[i]).display();

database[i]display();

Solution with Virtual Function
 Declare the function as virtual in the

base class

Outputs
Bob is 18 years old.
H i d d tbase class

class Person {
public:

Person();
Person(char *name int age);

He is an undergraduate.

Person(char *name, int age);
~Person();
virtual void display() const;

private:
h *char *m_name;

int m_age;
};

 Invoke indirectly through base class pointer or reference
Person *database[3];
database[0] = new Undergraduate("Bob", 18);

Will invoke Undergraduate::display()

[] g (,);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "INS512", "associate professor");
for (int i=0; i<3; i++)

26-10

Will invoke Undergraduate::display()

or equivalently (*database[i]).display();

database[i]display();

Solution with Virtual Function
 Declare the function as virtual in the

base class

Outputs
Bob is 18 years old.
H i d d tbase class

class Person {
public:

Person();
Person(char *name int age);

He is an undergraduate.
Bob is 18 years old.
He is a graduate student.Person(char *name, int age);

~Person();
virtual void display() const;

private:
h *

g
He has a stipend of 6000 dollars.
His address is INS501.

char *m_name;
int m_age;

};

 Invoke indirectly through base class pointer or reference
Person *database[3];
database[0] = new Undergraduate("Bob", 18);

Will invoke Undergraduate::display()

[] g (,);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "INS512", "associate professor");
for (int i=0; i<3; i++) Will invoke Undergraduate::display()

26-10

Will invoke Undergraduate::display()

or equivalently (*database[i]).display();

database[i]display(); Will invoke Undergraduate::display(),
Graduate::display()

Solution with Virtual Function
 Declare the function as virtual in the

base class

Outputs
Bob is 18 years old.
H i d d tbase class

class Person {
public:

Person();
Person(char *name int age);

He is an undergraduate.
Bob is 18 years old.
He is a graduate student.Person(char *name, int age);

~Person();
virtual void display() const;

private:
h * Ron is 34 years old

g
He has a stipend of 6000 dollars.
His address is INS501.

char *m_name;
int m_age;

};

Ron is 34 years old.
His address is INS512.
His rank is associate professor.

 Invoke indirectly through base class pointer or reference
Person *database[3];
database[0] = new Undergraduate("Bob", 18);

Will invoke Undergraduate::display()

[] g (,);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "INS512", "associate professor");
for (int i=0; i<3; i++) Will invoke Undergraduate::display()Will invoke Undergraduate::display()

26-10

Will invoke Undergraduate::display()

or equivalently (*database[i]).display();

database[i]display(); Will invoke Undergraduate::display(),
Graduate::display()
Will invoke Undergraduate::display(),
Graduate::display(), and Faculty::display()
in turn

Virtual vs. Non-virtual Functions
Person *base = new Person("Bob", 18);
Faculty *derived = new Faculty("Ron", 34, "INS512", "associate professor");

26-11

Virtual vs. Non-virtual Functions
Person *base = new Person("Bob", 18);
Faculty *derived = new Faculty("Ron", 34, "INS512", "associate professor");

Nonvirtual function

Person
display()

Faculty
display()

26-11

Virtual vs. Non-virtual Functions
Person *base = new Person("Bob", 18);
Faculty *derived = new Faculty("Ron", 34, "INS512", "associate professor");

Nonvirtual function
basedisplay();

Person
display()

Faculty
display()

26-11

Virtual vs. Non-virtual Functions
Person *base = new Person("Bob", 18);
Faculty *derived = new Faculty("Ron", 34, "INS512", "associate professor");

Nonvirtual function
basedisplay();
deriveddisplay();

deriveddisplay();

Person
display()

Faculty
display()

26-11

Virtual vs. Non-virtual Functions
Person *base = new Person("Bob", 18);
Faculty *derived = new Faculty("Ron", 34, "INS512", "associate professor");

Nonvirtual function
basedisplay();
deriveddisplay();

deriveddisplay();
base=derived;
basedisplay();

Person
display()

Faculty
display()

26-11

Virtual vs. Non-virtual Functions
Person *base = new Person("Bob", 18);
Faculty *derived = new Faculty("Ron", 34, "INS512", "associate professor");

Nonvirtual function
basedisplay();
deriveddisplay();

deriveddisplay();
base=derived;
basedisplay();

Person
display()

Faculty
display()

Compile-time binding
(static binding)

26-11

Virtual vs. Non-virtual Functions
Person *base = new Person("Bob", 18);
Faculty *derived = new Faculty("Ron", 34, "INS512", "associate professor");

Nonvirtual function
basedisplay();
deriveddisplay();

deriveddisplay();
base=derived;
basedisplay();

Person
display()

Faculty
display()

Compile-time binding
(static binding)

The function to be called is

26-11

The function to be called is
determined by the type of the
pointer during compilation.

Virtual vs. Non-virtual Functions
Person *base = new Person("Bob", 18);
Faculty *derived = new Faculty("Ron", 34, "INS512", "associate professor");

Nonvirtual function Virtual function
basedisplay();
deriveddisplay();

deriveddisplay();
base=derived;
basedisplay();

Person
display()

Person
display()

Faculty
display()

Faculty
display()

Compile-time binding
(static binding)

The function to be called is

26-11

The function to be called is
determined by the type of the
pointer during compilation.

Virtual vs. Non-virtual Functions
Person *base = new Person("Bob", 18);
Faculty *derived = new Faculty("Ron", 34, "INS512", "associate professor");

Nonvirtual function Virtual function
basedisplay();
deriveddisplay();

basedisplay();
deriveddisplay();
base=derived;
basedisplay();

Person
display()

Person
display()

Faculty
display()

Faculty
display()

Compile-time binding
(static binding)

The function to be called is

26-11

The function to be called is
determined by the type of the
pointer during compilation.

Virtual vs. Non-virtual Functions
Person *base = new Person("Bob", 18);
Faculty *derived = new Faculty("Ron", 34, "INS512", "associate professor");

Nonvirtual function Virtual function
basedisplay();
deriveddisplay();

basedisplay();
deriveddisplay();deriveddisplay();

base=derived;
basedisplay();

deriveddisplay();

Person
display()

Person
display()

Faculty
display()

Faculty
display()

Compile-time binding
(static binding)

The function to be called is

26-11

The function to be called is
determined by the type of the
pointer during compilation.

Virtual vs. Non-virtual Functions
Person *base = new Person("Bob", 18);
Faculty *derived = new Faculty("Ron", 34, "INS512", "associate professor");

Nonvirtual function Virtual function
basedisplay();
deriveddisplay();

basedisplay();
deriveddisplay();deriveddisplay();

base=derived;
basedisplay();

deriveddisplay();
base=derived;
basedisplay();

Person
display()

Person
display()

Faculty
display()

Faculty
display()

Compile-time binding
(static binding)

The function to be called is

26-11

The function to be called is
determined by the type of the
pointer during compilation.

Virtual vs. Non-virtual Functions
Person *base = new Person("Bob", 18);
Faculty *derived = new Faculty("Ron", 34, "INS512", "associate professor");

Nonvirtual function Virtual function
basedisplay();
deriveddisplay();

basedisplay();
deriveddisplay();deriveddisplay();

base=derived;
basedisplay();

deriveddisplay();
base=derived;
basedisplay();

Person
display()

Person
display()

i
Faculty

display()
Faculty

display()

polymorphic
pointer

Compile-time binding
(static binding)

The function to be called is

26-11

The function to be called is
determined by the type of the
pointer during compilation.

Virtual vs. Non-virtual Functions
Person *base = new Person("Bob", 18);
Faculty *derived = new Faculty("Ron", 34, "INS512", "associate professor");

Nonvirtual function Virtual function
basedisplay();
deriveddisplay();

basedisplay();
deriveddisplay();deriveddisplay();

base=derived;
basedisplay();

deriveddisplay();
base=derived;
basedisplay();

Person
display()

Person
display()

i
Faculty

display()
Faculty

display()

polymorphic
pointer

Compile-time binding
(static binding)

Run-time binding
(Late-binding, dynamic binding)

The function to be called is

26-11

The function to be called is
determined by the type of the
pointer during compilation.

Virtual vs. Non-virtual Functions
Person *base = new Person("Bob", 18);
Faculty *derived = new Faculty("Ron", 34, "INS512", "associate professor");

Nonvirtual function Virtual function
basedisplay();
deriveddisplay();

basedisplay();
deriveddisplay();deriveddisplay();

base=derived;
basedisplay();

deriveddisplay();
base=derived;
basedisplay();

Person
display()

Person
display()

i
Faculty

display()
Faculty

display()

polymorphic
pointer

Compile-time binding
(static binding)

Run-time binding
(Late-binding, dynamic binding)

The function to be called is The function to be called is

26-11

The function to be called is
determined by the type of the
pointer during compilation.

The function to be called is
determined by the object the pointer
refers to during run-time.

Virtual Function
 The keyword virtual is not required in a derived class.







26-12



Virtual Function
 The keyword virtual is not required in a derived class.

class Undergraduate: public Person {
blipublic:
Undergraduate(char *name, int age);
virtual void display() const; // optional here if display() is already a virtual

} // f ti i P l}; // function in Person class







26-12



Virtual Function
 The keyword virtual is not required in a derived class.

class Undergraduate: public Person {
blipublic:
Undergraduate(char *name, int age);
virtual void display() const; // optional here if display() is already a virtual

} // f ti i P l}; // function in Person class
Some C++ programmers consider it a good style to include the keyword for clarity







26-12



Virtual Function
 The keyword virtual is not required in a derived class.

class Undergraduate: public Person {
blipublic:
Undergraduate(char *name, int age);
virtual void display() const; // optional here if display() is already a virtual

} // f ti i P l}; // function in Person class
Some C++ programmers consider it a good style to include the keyword for clarity

 Syntax Syntax







26-12



Virtual Function
 The keyword virtual is not required in a derived class.

class Undergraduate: public Person {
blipublic:
Undergraduate(char *name, int age);
virtual void display() const; // optional here if display() is already a virtual

} // f ti i P l}; // function in Person class
Some C++ programmers consider it a good style to include the keyword for clarity

 Syntax The keyword virtual must not be used in Syntax The keyword virtual must not be used in
the function definition, only in the declaration







26-12



Virtual Function
 The keyword virtual is not required in a derived class.

class Undergraduate: public Person {
blipublic:
Undergraduate(char *name, int age);
virtual void display() const; // optional here if display() is already a virtual

} // f ti i P l}; // function in Person class
Some C++ programmers consider it a good style to include the keyword for clarity

 Syntax The keyword virtual must not be used in

error C2723: 'func1' : 'virtual' storage class specifier illegal on function definition

 Syntax The keyword virtual must not be used in
the function definition, only in the declaration

error C2723: 'func1' : 'virtual' storage-class specifier illegal on function definition







26-12



Virtual Function
 The keyword virtual is not required in a derived class.

class Undergraduate: public Person {
blipublic:
Undergraduate(char *name, int age);
virtual void display() const; // optional here if display() is already a virtual

} // f ti i P l}; // function in Person class
Some C++ programmers consider it a good style to include the keyword for clarity

 Syntax The keyword virtual must not be used in

error C2723: 'func1' : 'virtual' storage class specifier illegal on function definition

 Syntax The keyword virtual must not be used in
the function definition, only in the declaration

error C2723: 'func1' : 'virtual' storage-class specifier illegal on function definition

 Historical backgroundsg




26-12



Virtual Function
 The keyword virtual is not required in a derived class.

class Undergraduate: public Person {
blipublic:
Undergraduate(char *name, int age);
virtual void display() const; // optional here if display() is already a virtual

} // f ti i P l}; // function in Person class
Some C++ programmers consider it a good style to include the keyword for clarity

 Syntax The keyword virtual must not be used in

error C2723: 'func1' : 'virtual' storage class specifier illegal on function definition

 Syntax The keyword virtual must not be used in
the function definition, only in the declaration

error C2723: 'func1' : 'virtual' storage-class specifier illegal on function definition

e g Java Historical backgrounds e.g. Javag
 Most object-oriented languages have only run-time binding.


26-12



Virtual Function
 The keyword virtual is not required in a derived class.

class Undergraduate: public Person {
blipublic:
Undergraduate(char *name, int age);
virtual void display() const; // optional here if display() is already a virtual

} // f ti i P l}; // function in Person class
Some C++ programmers consider it a good style to include the keyword for clarity

 Syntax The keyword virtual must not be used in

error C2723: 'func1' : 'virtual' storage class specifier illegal on function definition

 Syntax The keyword virtual must not be used in
the function definition, only in the declaration

error C2723: 'func1' : 'virtual' storage-class specifier illegal on function definition

Efficiencye g Java Historical backgrounds Efficiency
consideration

e.g. Javag
 Most object-oriented languages have only run-time binding.
 C++, because of its origin in C, has compile-time binding by default.

26-12



Virtual Function
 The keyword virtual is not required in a derived class.

class Undergraduate: public Person {
blipublic:
Undergraduate(char *name, int age);
virtual void display() const; // optional here if display() is already a virtual

} // f ti i P l}; // function in Person class
Some C++ programmers consider it a good style to include the keyword for clarity

 Syntax The keyword virtual must not be used in

error C2723: 'func1' : 'virtual' storage class specifier illegal on function definition

 Syntax The keyword virtual must not be used in
the function definition, only in the declaration

error C2723: 'func1' : 'virtual' storage-class specifier illegal on function definition

Efficiencye g Java Historical backgrounds Efficiency
consideration

e.g. Javag
 Most object-oriented languages have only run-time binding.
 C++, because of its origin in C, has compile-time binding by default.

26-12

 Static member functions and constructors cannot be declared
virtual. Destructors are always declared as virtual functions.

Function Pointer
 Increasing the flexibility of your program

26-13

Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you
can pass a function pointer to a function) ex. qsort(), find(), sort()

26-13

Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you
can pass a function pointer to a function) ex. qsort(), find(), sort()

 Higher order programming: Higher order programming:

26-13

Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you
can pass a function pointer to a function) ex. qsort(), find(), sort()

 Higher order programming: Higher order programming: functions are objects that can be Higher order programming: Higher order programming: functions are objects that can be
input/output of some algorithms and processed extensively.

26-13

Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you
can pass a function pointer to a function) ex. qsort(), find(), sort()

 Higher order programming: Higher order programming: functions are objects that can be

 Syntax:

 Higher order programming: Higher order programming: functions are objects that can be
input/output of some algorithms and processed extensively.

 Syntax:

26-13

Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you
can pass a function pointer to a function) ex. qsort(), find(), sort()

 Higher order programming: Higher order programming: functions are objects that can be

 Syntax:

 Higher order programming: Higher order programming: functions are objects that can be
input/output of some algorithms and processed extensively.

return type (*function pointer variable)(parameters); Syntax: return_type (function_pointer_variable)(parameters);

26-13

Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you
can pass a function pointer to a function) ex. qsort(), find(), sort()

 Higher order programming: Higher order programming: functions are objects that can be

 Syntax:

 Higher order programming: Higher order programming: functions are objects that can be
input/output of some algorithms and processed extensively.

return type (*function pointer variable)(parameters); Syntax:
 Example:

return_type (function_pointer_variable)(parameters);

26-13

Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you
can pass a function pointer to a function) ex. qsort(), find(), sort()

 Higher order programming: Higher order programming: functions are objects that can be

 Syntax:

 Higher order programming: Higher order programming: functions are objects that can be
input/output of some algorithms and processed extensively.

return type (*function pointer variable)(parameters); Syntax:
 Example:

int func1(int x) {

return_type (function_pointer_variable)(parameters);

int func1(int x) {
…
return 0;

}}

26-13

Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you
can pass a function pointer to a function) ex. qsort(), find(), sort()

 Higher order programming: Higher order programming: functions are objects that can be

 Syntax:

 Higher order programming: Higher order programming: functions are objects that can be
input/output of some algorithms and processed extensively.

return type (*function pointer variable)(parameters);

int func2(int x) {

 Syntax:
 Example:

int func1(int x) {

return_type (function_pointer_variable)(parameters);

int func2(int x) {
…
return 0;

}

int func1(int x) {
…
return 0;

} }}

26-13

Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you
can pass a function pointer to a function) ex. qsort(), find(), sort()

 Higher order programming: Higher order programming: functions are objects that can be

 Syntax:

 Higher order programming: Higher order programming: functions are objects that can be
input/output of some algorithms and processed extensively.

return type (*function pointer variable)(parameters);

int func2(int x) {

 Syntax:
 Example:

int func1(int x) {

return_type (function_pointer_variable)(parameters);

int func2(int x) {
…
return 0;

}

int func1(int x) {
…
return 0;

} }

int (*fp)(int);

}

26-13

fp = func1;
(*fp)(123); // calling function func1(), i.e. func1(123)

Function Pointer (cont’d)()
 Increasing the flexibility of the program

26-14

Function Pointer (cont’d)()
 Increasing the flexibility of the program
 Example continued Example continued

26-14

Function Pointer (cont’d)()
 Increasing the flexibility of the program
 Example continued Example continued

func1(), func2(), and fp are defined as before

26-14

Function Pointer (cont’d)()
 Increasing the flexibility of the program
 Example continued Example continued

func1(), func2(), and fp are defined as before

void service(int (*proc)(int), int data) {
…
(*proc)(data);
…

}
…
fp = func2;
…

26-14

service(fp, x);

Virtual Table
 C++ uses function pointers to implement the late binding

26-15

Virtual Table
 C++ uses function pointers to implement the late binding C++ uses function pointers to implement the late binding (runtime

binding dynamic binding dynamic dispatch) mechanism ofbinding, dynamic binding, dynamic dispatch) mechanism of
virtual functions

26-15

Virtual Table
 C++ uses function pointers to implement the late binding C++ uses function pointers to implement the late binding (runtime

binding dynamic binding dynamic dispatch) mechanism of
 C++ uses function pointers to implement the late binding (runtime

binding dynamic binding dynamic dispatch) mechanism ofbinding, dynamic binding, dynamic dispatch) mechanism of
virtual functions
binding, dynamic binding, dynamic dispatch) mechanism of
virtual functions: the address of virtual member functions are stored
in each object as the “virtual table” data structure

26-15

Virtual Table
 C++ uses function pointers to implement the late binding C++ uses function pointers to implement the late binding (runtime

binding dynamic binding dynamic dispatch) mechanism of
 C++ uses function pointers to implement the late binding (runtime

binding dynamic binding dynamic dispatch) mechanism ofbinding, dynamic binding, dynamic dispatch) mechanism of
virtual functions
binding, dynamic binding, dynamic dispatch) mechanism of
virtual functions: the address of virtual member functions are stored
in each object as the “virtual table” data structure

Person

Graduate

26-15

Virtual Table
 C++ uses function pointers to implement the late binding C++ uses function pointers to implement the late binding (runtime

binding dynamic binding dynamic dispatch) mechanism of
 C++ uses function pointers to implement the late binding (runtime

binding dynamic binding dynamic dispatch) mechanism ofbinding, dynamic binding, dynamic dispatch) mechanism of
virtual functions
binding, dynamic binding, dynamic dispatch) mechanism of
virtual functions: the address of virtual member functions are stored
in each object as the “virtual table” data structure

Person

vtbl ptr
m_name
m age

Graduate

m_age

bj

Person::display

a Person object

26-15

Virtual Table
 C++ uses function pointers to implement the late binding C++ uses function pointers to implement the late binding (runtime

binding dynamic binding dynamic dispatch) mechanism of
 C++ uses function pointers to implement the late binding (runtime

binding dynamic binding dynamic dispatch) mechanism ofbinding, dynamic binding, dynamic dispatch) mechanism of
virtual functions
binding, dynamic binding, dynamic dispatch) mechanism of
virtual functions: the address of virtual member functions are stored
in each object as the “virtual table” data structure

Person

vtbl ptr
m_name
m age

vtbl ptr

G d di l

Graduate

m_age

bj

m_name
m_age

m_stipend
Person::display

Graduate::display
other virtual

functions
a Person object m_office

a Graduate object

26-15

j

Virtual Table
 C++ uses function pointers to implement the late binding C++ uses function pointers to implement the late binding (runtime

binding dynamic binding dynamic dispatch) mechanism of
 C++ uses function pointers to implement the late binding (runtime

binding dynamic binding dynamic dispatch) mechanism ofbinding, dynamic binding, dynamic dispatch) mechanism of
virtual functions
binding, dynamic binding, dynamic dispatch) mechanism of
virtual functions: the address of virtual member functions are stored
in each object as the “virtual table” data structure

Virtual table
Person

vtbl ptr
m_name
m age

vtbl ptr

G d di l

Graduate

m_age

bj

m_name
m_age

m_stipend
Person::display

Graduate::display
other virtual

functions
a Person object m_office

a Graduate object

26-15

j

Virtual Table
 C++ uses function pointers to implement the late binding C++ uses function pointers to implement the late binding (runtime

binding dynamic binding dynamic dispatch) mechanism of
 C++ uses function pointers to implement the late binding (runtime

binding dynamic binding dynamic dispatch) mechanism ofbinding, dynamic binding, dynamic dispatch) mechanism of
virtual functions
binding, dynamic binding, dynamic dispatch) mechanism of
virtual functions: the address of virtual member functions are stored
in each object as the “virtual table” data structure

Virtual table
Person

vtbl ptr
m_name
m age

vtbl ptr

G d di l

Graduate

m_age

bj

m_name
m_age

m_stipend
Person::display

Graduate::display
other virtual

functions
a Person object m_office

a Graduate object

26-15

j
Note: addresses of non-virtual functions are not kept in the

virtual table

Virtual Table
 C++ uses function pointers to implement the late binding C++ uses function pointers to implement the late binding (runtime

binding dynamic binding dynamic dispatch) mechanism of
 C++ uses function pointers to implement the late binding (runtime

binding dynamic binding dynamic dispatch) mechanism ofbinding, dynamic binding, dynamic dispatch) mechanism of
virtual functions
binding, dynamic binding, dynamic dispatch) mechanism of
virtual functions: the address of virtual member functions are stored
in each object as the “virtual table” data structure

Virtual table aka
Virtual function table
Virtual method tablePerson

vtbl ptr
m_name
m age

vtbl ptr

G d di l

Dispatch table

Graduate

m_age

bj

m_name
m_age

m_stipend
Person::display

Graduate::display
other virtual

functions
a Person object m_office

a Graduate object

26-15

j
Note: addresses of non-virtual functions are not kept in the

virtual table

Overloading, Overriding, Hidingg, g, g
 Overloading: two functions in the same

scope have the same name differentscope, have the same name, different
signatures (virtual is not required)

26-16

Overloading, Overriding, Hidingg, g, g
 Overloading: two functions in the same

scope have the same name different
service(int)
service(double int)scope, have the same name, different

signatures (virtual is not required)
service(double, int)

26-16

Overloading, Overriding, Hidingg, g, g
 Overloading: two functions in the same

scope have the same name different
service(int)
service(double int)scope, have the same name, different

signatures (virtual is not required)
service(double, int)

 Overriding: two functions in different Overriding: two functions in different
scopes (parent vs child), have the same
name. same signatures (virtual is required)g (q)

26-16

Overloading, Overriding, Hidingg, g, g
 Overloading: two functions in the same

scope have the same name different
service(int)
service(double int)scope, have the same name, different

signatures (virtual is not required)
service(double, int)

 Overriding: two functions in different virtual service(int,int)

i l i (i i)

 Overriding: two functions in different
scopes (parent vs child), have the same
name. same signatures (virtual is required)

virtual service(int,int)
g (q)

26-16

Overloading, Overriding, Hidingg, g, g
 Overloading: two functions in the same

scope have the same name different
service(int)
service(double int)scope, have the same name, different

signatures (virtual is not required)
service(double, int)

 Overriding: two functions in different virtual service(int,int)

i l i (i i)

 Overriding: two functions in different
scopes (parent vs child), have the same
name. same signatures (virtual is required)

virtual service(int,int)
g (q)

 Hiding: base class member function is hiddeng

26-16

Overloading, Overriding, Hidingg, g, g
 Overloading: two functions in the same

scope have the same name different
service(int)
service(double int)scope, have the same name, different

signatures (virtual is not required)
service(double, int)

 Overriding: two functions in different virtual service(int,int)

i l i (i i)

 Overriding: two functions in different
scopes (parent vs child), have the same
name. same signatures (virtual is required)

virtual service(int,int)
g (q)

 Hiding: base class member function is hiddeng
1. When a base class and a derived class

declare virtual member functions with different
i t b t ith thsignatures but with the same name.

26-16

Overloading, Overriding, Hidingg, g, g
 Overloading: two functions in the same

scope have the same name different
service(int)
service(double int)scope, have the same name, different

signatures (virtual is not required)
service(double, int)

 Overriding: two functions in different virtual service(int,int)

i l i (i i)

 Overriding: two functions in different
scopes (parent vs child), have the same
name. same signatures (virtual is required)

virtual service(int,int)
g (q)

 Hiding: base class member function is hidden
virtual service(double)

virtual service(int int)

g
1. When a base class and a derived class

declare virtual member functions with different
i t b t ith th virtual service(int,int)signatures but with the same name.

26-16

Overloading, Overriding, Hidingg, g, g
 Overloading: two functions in the same

scope have the same name different
service(int)
service(double int)scope, have the same name, different

signatures (virtual is not required)
service(double, int)

 Overriding: two functions in different virtual service(int,int)

i l i (i i)

 Overriding: two functions in different
scopes (parent vs child), have the same
name. same signatures (virtual is required)

virtual service(int,int)
g (q)

 Hiding: base class member function is hidden
virtual service(double)

virtual service(int int)

g
1. When a base class and a derived class

declare virtual member functions with different
i t b t ith th virtual service(int,int)

2. When a base class declares a non-virtual
member function and a derived class declares

signatures but with the same name.

26-16

member function and a derived class declares
a member function with the same name but
with or without the same signature.

Overloading, Overriding, Hidingg, g, g
 Overloading: two functions in the same

scope have the same name different
service(int)
service(double int)scope, have the same name, different

signatures (virtual is not required)
service(double, int)

 Overriding: two functions in different virtual service(int,int)

i l i (i i)

 Overriding: two functions in different
scopes (parent vs child), have the same
name. same signatures (virtual is required)

virtual service(int,int)
g (q)

 Hiding: base class member function is hidden
virtual service(double)

virtual service(int int)

g
1. When a base class and a derived class

declare virtual member functions with different
i t b t ith th

service(int,int)

virtual service(int,int)

2. When a base class declares a non-virtual
member function and a derived class declares

signatures but with the same name.

26-16service(int,int)

member function and a derived class declares
a member function with the same name but
with or without the same signature.

Virtual Function vs. Overloadingg








26-17





Virtual Function vs. Overloadingg
 Overloading







26-17





Virtual Function vs. Overloadingg
 Overloading (static polymorphism or compile-time polymorphism)







26-17





Virtual Function vs. Overloadingg
 Overloading

void Person::display() const;
(static polymorphism or compile-time polymorphism)
p y() ;

void Person::display(bool showDetail) const;
The arguments of the overloaded functions must differ.







26-17





Virtual Function vs. Overloadingg
 Overloading

void Person::display() const;
(static polymorphism or compile-time polymorphism)
p y() ;

void Person::display(bool showDetail) const;
The arguments of the overloaded functions must differ.

O idi Overriding







26-17





Virtual Function vs. Overloadingg
 Overloading

void Person::display() const;
(static polymorphism or compile-time polymorphism)
p y() ;

void Person::display(bool showDetail) const;
The arguments of the overloaded functions must differ.

O idi (i t l f ti d i l hi) Overriding (virtual functions, dynamic polymorphism)







26-17





Virtual Function vs. Overloadingg
 Overloading

void Person::display() const;
(static polymorphism or compile-time polymorphism)
p y() ;

void Person::display(bool showDetail) const;
The arguments of the overloaded functions must differ.

O idi (i t l f ti d i l hi) Overriding
virtual void Person::display() const;
virtual void Faculty::display() const;

(virtual functions, dynamic polymorphism)

The arguments must be identical.
y p y() ;







26-17





Virtual Function vs. Overloadingg
 Overloading

void Person::display() const;
(static polymorphism or compile-time polymorphism)
p y() ;

void Person::display(bool showDetail) const;
The arguments of the overloaded functions must differ.

O idi (i t l f ti d i l hi)
Note that scope operators are not
required in these declarations, they

 Overriding
virtual void Person::display() const;
virtual void Faculty::display() const;

(virtual functions, dynamic polymorphism)

q , y
are only for illustration purpose.The arguments must be identical.

y p y() ;







26-17





Virtual Function vs. Overloadingg
 Overloading

void Person::display() const;
(static polymorphism or compile-time polymorphism)
p y() ;

void Person::display(bool showDetail) const;
The arguments of the overloaded functions must differ.

O idi (i t l f ti d i l hi)
Note that scope operators are not
required in these declarations, they

 Overriding
virtual void Person::display() const;
virtual void Faculty::display() const;

(virtual functions, dynamic polymorphism)

q , y
are only for illustration purpose.The arguments must be identical.

y p y() ;

 What happens if the arguments are not identical?
virtual void Person::display() const;
virtual void Faculty::display(bool showDetail) const;







26-17





Virtual Function vs. Overloadingg
 Overloading

void Person::display() const;
(static polymorphism or compile-time polymorphism)
p y() ;

void Person::display(bool showDetail) const;
The arguments of the overloaded functions must differ.

O idi (i t l f ti d i l hi)
Note that scope operators are not
required in these declarations, they

 Overriding
virtual void Person::display() const;
virtual void Faculty::display() const;

(virtual functions, dynamic polymorphism)

q , y
are only for illustration purpose.The arguments must be identical.

y p y() ;

 What happens if the arguments are not identical?

I F lt l di l (b l) d NOT id P di l ()

virtual void Person::display() const;
virtual void Faculty::display(bool showDetail) const;

 In Faculty class, display(bool) does NOT override Person::display(),




26-17





Virtual Function vs. Overloadingg
 Overloading

void Person::display() const;
(static polymorphism or compile-time polymorphism)
p y() ;

void Person::display(bool showDetail) const;
The arguments of the overloaded functions must differ.

O idi (i t l f ti d i l hi)
Note that scope operators are not
required in these declarations, they

 Overriding
virtual void Person::display() const;
virtual void Faculty::display() const;

(virtual functions, dynamic polymorphism)

q , y
are only for illustration purpose.The arguments must be identical.

y p y() ;

 What happens if the arguments are not identical?

I F lt l di l (b l) d NOT id P di l ()

virtual void Person::display() const;
virtual void Faculty::display(bool showDetail) const;

 In Faculty class, display(bool) does NOT override Person::display(),
 It does NOT overload Person::display() neither.



26-17





Virtual Function vs. Overloadingg
 Overloading

void Person::display() const;
(static polymorphism or compile-time polymorphism)
p y() ;

void Person::display(bool showDetail) const;
The arguments of the overloaded functions must differ.

O idi (i t l f ti d i l hi)
Note that scope operators are not
required in these declarations, they

 Overriding
virtual void Person::display() const;
virtual void Faculty::display() const;

(virtual functions, dynamic polymorphism)

q , y
are only for illustration purpose.The arguments must be identical.

y p y() ;

 What happens if the arguments are not identical?

I F lt l di l (b l) d NOT id P di l ()

virtual void Person::display() const;
virtual void Faculty::display(bool showDetail) const;

 In Faculty class, display(bool) does NOT override Person::display(),
 It does NOT overload Person::display() neither.

 This phenomenon is called hiding

26-17

 This phenomenon is called hiding.


Virtual Function vs. Overloadingg
 Overloading

void Person::display() const;
(static polymorphism or compile-time polymorphism)
p y() ;

void Person::display(bool showDetail) const;
The arguments of the overloaded functions must differ.

O idi (i t l f ti d i l hi)
Note that scope operators are not
required in these declarations, they

 Overriding
virtual void Person::display() const;
virtual void Faculty::display() const;

(virtual functions, dynamic polymorphism)

q , y
are only for illustration purpose.The arguments must be identical.

y p y() ;

 What happens if the arguments are not identical?

I F lt l di l (b l) d NOT id P di l ()

virtual void Person::display() const;
virtual void Faculty::display(bool showDetail) const;

 In Faculty class, display(bool) does NOT override Person::display(),
 It does NOT overload Person::display() neither.

 This phenomenon is called hiding

26-17

 This phenomenon is called hiding.
 Only Faculty::display(bool) can be called with a Faculty object or pointer,

no Faculty::display(), although Person::display() can also be called.

Virtual Function vs. Overloadingg
 Overloading

void Person::display() const;
(static polymorphism or compile-time polymorphism)
p y() ;

void Person::display(bool showDetail) const;
The arguments of the overloaded functions must differ.

O idi (i t l f ti d i l hi)
Note that scope operators are not
required in these declarations, they

 Overriding
virtual void Person::display() const;
virtual void Faculty::display() const;

(virtual functions, dynamic polymorphism)

q , y
are only for illustration purpose.The arguments must be identical.

y p y() ;

 What happens if the arguments are not identical? Person::display()

I F lt l di l (b l) d NOT id P di l ()

virtual void Person::display() const;
virtual void Faculty::display(bool showDetail) const;

Person::display()

 In Faculty class, display(bool) does NOT override Person::display(),
 It does NOT overload Person::display() neither.

 This phenomenon is called hiding

26-17

 This phenomenon is called hiding.
 Only Faculty::display(bool) can be called with a Faculty object or pointer,

no Faculty::display(), although Person::display() can also be called.

Virtual Function vs. Overloadingg
 Overloading

void Person::display() const;
(static polymorphism or compile-time polymorphism)
p y() ;

void Person::display(bool showDetail) const;
The arguments of the overloaded functions must differ.

O idi (i t l f ti d i l hi)
Note that scope operators are not
required in these declarations, they

 Overriding
virtual void Person::display() const;
virtual void Faculty::display() const;

(virtual functions, dynamic polymorphism)

q , y
are only for illustration purpose.The arguments must be identical.

y p y() ;

 What happens if the arguments are not identical? Person::display()

I F lt l di l (b l) d NOT id P di l ()

virtual void Person::display() const;
virtual void Faculty::display(bool showDetail) const;

Person::display()
Faculty::display()

 In Faculty class, display(bool) does NOT override Person::display(),
 It does NOT overload Person::display() neither.

 This phenomenon is called hiding

26-17

 This phenomenon is called hiding.
 Only Faculty::display(bool) can be called with a Faculty object or pointer,

no Faculty::display(), although Person::display() can also be called.

Virtual Function vs. Overloadingg
 Overloading

void Person::display() const;
(static polymorphism or compile-time polymorphism)
p y() ;

void Person::display(bool showDetail) const;
The arguments of the overloaded functions must differ.

O idi (i t l f ti d i l hi)
Note that scope operators are not
required in these declarations, they

 Overriding
virtual void Person::display() const;
virtual void Faculty::display() const;

(virtual functions, dynamic polymorphism)

q , y
are only for illustration purpose.The arguments must be identical.

y p y() ;

 What happens if the arguments are not identical? Person::display()

I F lt l di l (b l) d NOT id P di l ()

virtual void Person::display() const;
virtual void Faculty::display(bool showDetail) const;

Person::display()
Faculty::display()
Faculty::display(bool)

 In Faculty class, display(bool) does NOT override Person::display(),
 It does NOT overload Person::display() neither.

 This phenomenon is called hiding

26-17

 This phenomenon is called hiding.
 Only Faculty::display(bool) can be called with a Faculty object or pointer,

no Faculty::display(), although Person::display() can also be called.

Member Function Calling Ruleg
Faculty *prof = new Faculty("Ron", 34, "INS512", "associate professor");
Person *person = prof;








PersonPerson
virtual display()



26-18

Faculty
virtual display(bool)



Member Function Calling Ruleg
Faculty *prof = new Faculty("Ron", 34, "INS512", "associate professor");
Person *person = prof;
persondisplay(); // dynamically binded, calling Person::display()






PersonPerson
virtual display()



26-18

Faculty
virtual display(bool)



Member Function Calling Ruleg
Faculty *prof = new Faculty("Ron", 34, "INS512", "associate professor");
Person *person = prof;
persondisplay(); // dynamically binded, calling Person::display()
persondisplay(true);// compile-time error, display() does not take 1 param




PersonPerson
virtual display()



26-18

Faculty
virtual display(bool)



Member Function Calling Ruleg
Faculty *prof = new Faculty("Ron", 34, "INS512", "associate professor");
Person *person = prof;
persondisplay(); // dynamically binded, calling Person::display()
persondisplay(true);// compile-time error, display() does not take 1 param
profdisplay(); // compile-time error display(bool) does not take 0 paramprof display(); // compile time error, display(bool) does not take 0 param


PersonPerson
virtual display()



26-18

Faculty
virtual display(bool)



Member Function Calling Ruleg
Faculty *prof = new Faculty("Ron", 34, "INS512", "associate professor");
Person *person = prof;
persondisplay(); // dynamically binded, calling Person::display()
persondisplay(true);// compile-time error, display() does not take 1 param
profdisplay(); // compile-time error display(bool) does not take 0 paramprof display(); // compile time error, display(bool) does not take 0 param
profdisplay(true); // dynamically binded, calling Faculty::display(bool)

PersonPerson
virtual display()



26-18

Faculty
virtual display(bool)



Member Function Calling Ruleg
Faculty *prof = new Faculty("Ron", 34, "INS512", "associate professor");
Person *person = prof;
persondisplay(); // dynamically binded, calling Person::display()
persondisplay(true);// compile-time error, display() does not take 1 param
profdisplay(); // compile-time error display(bool) does not take 0 paramprof display(); // compile time error, display(bool) does not take 0 param
profdisplay(true); // dynamically binded, calling Faculty::display(bool)

 The member function resolution and binding rules in C++:

PersonPerson
virtual display()



26-18

Faculty
virtual display(bool)



Member Function Calling Ruleg
Faculty *prof = new Faculty("Ron", 34, "INS512", "associate professor");
Person *person = prof;
persondisplay(); // dynamically binded, calling Person::display()
persondisplay(true);// compile-time error, display() does not take 1 param
profdisplay(); // compile-time error display(bool) does not take 0 paramprof display(); // compile time error, display(bool) does not take 0 param
profdisplay(true); // dynamically binded, calling Faculty::display(bool)

 The member function resolution and binding rules in C++:
referrer.function() referrer-function()

PersonPerson
virtual display()



26-18

Faculty
virtual display(bool)



Member Function Calling Ruleg
Faculty *prof = new Faculty("Ron", 34, "INS512", "associate professor");
Person *person = prof;
persondisplay(); // dynamically binded, calling Person::display()
persondisplay(true);// compile-time error, display() does not take 1 param
profdisplay(); // compile-time error display(bool) does not take 0 paramprof display(); // compile time error, display(bool) does not take 0 param
profdisplay(true); // dynamically binded, calling Faculty::display(bool)

 The member function resolution and binding rules in C++:
referrer.function() referrer-function()

1. Search in the scope of the static type of the referrer pointer/reference/object to
find the specified function in its explicitly defined functions

Person

find the specified function in its explicitly defined functions

Person
virtual display()



26-18

Faculty
virtual display(bool)



Member Function Calling Ruleg
Faculty *prof = new Faculty("Ron", 34, "INS512", "associate professor");
Person *person = prof;
persondisplay(); // dynamically binded, calling Person::display()
persondisplay(true);// compile-time error, display() does not take 1 param
profdisplay(); // compile-time error display(bool) does not take 0 paramprof display(); // compile time error, display(bool) does not take 0 param
profdisplay(true); // dynamically binded, calling Faculty::display(bool)

 The member function resolution and binding rules in C++:
referrer.function() referrer-function()

1. Search in the scope of the static type of the referrer pointer/reference/object to
find the specified function in its explicitly defined functions

Person

find the specified function in its explicitly defined functions
2. If it is a virtual function and referrer is a pointer (including this pointer) or

reference, use dynamic binding otherwise use static one Person
virtual display()



26-18

Faculty
virtual display(bool)



Member Function Calling Ruleg
Faculty *prof = new Faculty("Ron", 34, "INS512", "associate professor");
Person *person = prof;
persondisplay(); // dynamically binded, calling Person::display()
persondisplay(true);// compile-time error, display() does not take 1 param
profdisplay(); // compile-time error display(bool) does not take 0 paramprof display(); // compile time error, display(bool) does not take 0 param
profdisplay(true); // dynamically binded, calling Faculty::display(bool)

 The member function resolution and binding rules in C++:
referrer.function() referrer-function()

1. Search in the scope of the static type of the referrer pointer/reference/object to
find the specified function in its explicitly defined functions

Person

find the specified function in its explicitly defined functions
2. If it is a virtual function and referrer is a pointer (including this pointer) or

reference, use dynamic binding otherwise use static one Person
virtual display()



What functions are explicit in the scope of a class?

26-18

Faculty
virtual display(bool)



Member Function Calling Ruleg
Faculty *prof = new Faculty("Ron", 34, "INS512", "associate professor");
Person *person = prof;
persondisplay(); // dynamically binded, calling Person::display()
persondisplay(true);// compile-time error, display() does not take 1 param
profdisplay(); // compile-time error display(bool) does not take 0 paramprof display(); // compile time error, display(bool) does not take 0 param
profdisplay(true); // dynamically binded, calling Faculty::display(bool)

 The member function resolution and binding rules in C++:
referrer.function() referrer-function()

1. Search in the scope of the static type of the referrer pointer/reference/object to
find the specified function in its explicitly defined functions

Person

find the specified function in its explicitly defined functions
2. If it is a virtual function and referrer is a pointer (including this pointer) or

reference, use dynamic binding otherwise use static one Person
virtual display()

1. Defined in the class declaration
What functions are explicit in the scope of a class?

26-18

Faculty
virtual display(bool)



Member Function Calling Ruleg
Faculty *prof = new Faculty("Ron", 34, "INS512", "associate professor");
Person *person = prof;
persondisplay(); // dynamically binded, calling Person::display()
persondisplay(true);// compile-time error, display() does not take 1 param
profdisplay(); // compile-time error display(bool) does not take 0 paramprof display(); // compile time error, display(bool) does not take 0 param
profdisplay(true); // dynamically binded, calling Faculty::display(bool)

 The member function resolution and binding rules in C++:
referrer.function() referrer-function()

1. Search in the scope of the static type of the referrer pointer/reference/object to
find the specified function in its explicitly defined functions

Person

find the specified function in its explicitly defined functions
2. If it is a virtual function and referrer is a pointer (including this pointer) or

reference, use dynamic binding otherwise use static one Person
virtual display()

1. Defined in the class declaration
What functions are explicit in the scope of a class?

26-18

Faculty
virtual display(bool)

2. Search upward the inheritance tree, match
all functions not hided previously (by any
function having the same name)

Explicitly Defined Functionsp y
class Base {
public:

void funcA() { cout << "Base::funcA() #1\n"; }void funcA() { cout << Base::funcA() #1\n ; }
virtual void funcB() { cout << "Base::funcB() #2\n"; }
void funcC() { cout << "Base::funcC() #3\n"; }
virtual void funcD() { cout << "Base::funcD() #4\n"; }
virtual void funcE() { cout << "Base::funcE() #5\n"; }
virtual void funcE(int, int) { cout << "Base::funcE(int,int) #6\n"; }

};

26-180

Explicitly Defined Functionsp y
class Base {
public:

void funcA() { cout << "Base::funcA() #1\n"; }
Virtual table: 2, 4, 5, 6

void funcA() { cout << Base::funcA() #1\n ; }
virtual void funcB() { cout << "Base::funcB() #2\n"; }
void funcC() { cout << "Base::funcC() #3\n"; }
virtual void funcD() { cout << "Base::funcD() #4\n"; }
virtual void funcE() { cout << "Base::funcE() #5\n"; }
virtual void funcE(int, int) { cout << "Base::funcE(int,int) #6\n"; }

};

26-180

Explicitly Defined Functionsp y
class Base {
public:

void funcA() { cout << "Base::funcA() #1\n"; }
Virtual table: 2, 4, 5, 6

void funcA() { cout << Base::funcA() #1\n ; }
virtual void funcB() { cout << "Base::funcB() #2\n"; }
void funcC() { cout << "Base::funcC() #3\n"; }
virtual void funcD() { cout << "Base::funcD() #4\n"; }

Explicit: 1,2,3,4,5,6

virtual void funcE() { cout << "Base::funcE() #5\n"; }
virtual void funcE(int, int) { cout << "Base::funcE(int,int) #6\n"; }

};

26-180

Explicitly Defined Functionsp y
class Base {
public:

void funcA() { cout << "Base::funcA() #1\n"; }
Virtual table: 2, 4, 5, 6

void funcA() { cout << Base::funcA() #1\n ; }
virtual void funcB() { cout << "Base::funcB() #2\n"; }
void funcC() { cout << "Base::funcC() #3\n"; }
virtual void funcD() { cout << "Base::funcD() #4\n"; }

Explicit: 1,2,3,4,5,6

virtual void funcE() { cout << "Base::funcE() #5\n"; }
virtual void funcE(int, int) { cout << "Base::funcE(int,int) #6\n"; }

}; Virtual table: 2, 8, 5, 6, 9
class Derived: public Base {
public:

void funcC() {
"D i d f C() #7\ "cout << "Derived::funcC() #7\n";

}
void funcD() {

cout << "Derived::funcD() #8\n";cout << Derived::funcD() #8\n ;
}
virtual void funcE(int) {

cout << "Derived::funcE(int) #9\n";

26-180

}
};

Explicitly Defined Functionsp y
class Base {
public:

void funcA() { cout << "Base::funcA() #1\n"; }
Virtual table: 2, 4, 5, 6

void funcA() { cout << Base::funcA() #1\n ; }
virtual void funcB() { cout << "Base::funcB() #2\n"; }
void funcC() { cout << "Base::funcC() #3\n"; }
virtual void funcD() { cout << "Base::funcD() #4\n"; }

Explicit: 1,2,3,4,5,6

virtual void funcE() { cout << "Base::funcE() #5\n"; }
virtual void funcE(int, int) { cout << "Base::funcE(int,int) #6\n"; }

}; Virtual table: 2, 8, 5, 6, 9
class Derived: public Base {
public:

void funcC() {
"D i d f C() #7\ "cout << "Derived::funcC() #7\n";

}
void funcD() {

cout << "Derived::funcD() #8\n";cout << Derived::funcD() #8\n ;
}
virtual void funcE(int) {

cout << "Derived::funcE(int) #9\n";

26-180

Explicit: 1,2,7,8,9
Implicit: 3,4,5,6

}
};

Explicitly Defined Functionsp y
class Base {
public:

void funcA() { cout << "Base::funcA() #1\n"; }
Virtual table: 2, 4, 5, 6

void funcA() { cout << Base::funcA() #1\n ; }
virtual void funcB() { cout << "Base::funcB() #2\n"; }
void funcC() { cout << "Base::funcC() #3\n"; }
virtual void funcD() { cout << "Base::funcD() #4\n"; }

Explicit: 1,2,3,4,5,6

virtual void funcE() { cout << "Base::funcE() #5\n"; }
virtual void funcE(int, int) { cout << "Base::funcE(int,int) #6\n"; }

}; Virtual table: 2, 8, 5, 6, 9
class FDerived1: public Derived {
};

class Derived: public Base {
public:

void funcC() {
"D i d f C() #7\ "

Virtual table: 2, 8, 5, 6, 9

cout << "Derived::funcC() #7\n";
}
void funcD() {

cout << "Derived::funcD() #8\n";cout << Derived::funcD() #8\n ;
}
virtual void funcE(int) {

cout << "Derived::funcE(int) #9\n";

26-180

Explicit: 1,2,7,8,9
Implicit: 3,4,5,6

}
};

Explicitly Defined Functionsp y
class Base {
public:

void funcA() { cout << "Base::funcA() #1\n"; }
Virtual table: 2, 4, 5, 6

void funcA() { cout << Base::funcA() #1\n ; }
virtual void funcB() { cout << "Base::funcB() #2\n"; }
void funcC() { cout << "Base::funcC() #3\n"; }
virtual void funcD() { cout << "Base::funcD() #4\n"; }

Explicit: 1,2,3,4,5,6

virtual void funcE() { cout << "Base::funcE() #5\n"; }
virtual void funcE(int, int) { cout << "Base::funcE(int,int) #6\n"; }

};
Explicit: 1,2,7,8,9
Implicit: 3,4,5,6Virtual table: 2, 8, 5, 6, 9

class FDerived1: public Derived {
};

class Derived: public Base {
public:

void funcC() {
"D i d f C() #7\ "

Virtual table: 2, 8, 5, 6, 9

cout << "Derived::funcC() #7\n";
}
void funcD() {

cout << "Derived::funcD() #8\n";cout << Derived::funcD() #8\n ;
}
virtual void funcE(int) {

cout << "Derived::funcE(int) #9\n";

26-180

Explicit: 1,2,7,8,9
Implicit: 3,4,5,6

}
};

Explicitly Defined Functionsp y
class Base {
public:

void funcA() { cout << "Base::funcA() #1\n"; }
Virtual table: 2, 4, 5, 6

void funcA() { cout << Base::funcA() #1\n ; }
virtual void funcB() { cout << "Base::funcB() #2\n"; }
void funcC() { cout << "Base::funcC() #3\n"; }
virtual void funcD() { cout << "Base::funcD() #4\n"; }

Explicit: 1,2,3,4,5,6

virtual void funcE() { cout << "Base::funcE() #5\n"; }
virtual void funcE(int, int) { cout << "Base::funcE(int,int) #6\n"; }

};
Explicit: 1,2,7,8,9
Implicit: 3,4,5,6Virtual table: 2, 8, 5, 6, 9

class FDerived1: public Derived {
};

class Derived: public Base {
public:

void funcC() {
"D i d f C() #7\ " i 2 i i {

Virtual table: 2, 8, 5, 6, 9

cout << "Derived::funcC() #7\n";
}
void funcD() {

cout << "Derived::funcD() #8\n";

class FDerived2: public Derived {
public:

void funcE() {
cout << "FDerived2::funcE() #10\n";

Virtual table: 2, 8, 10, 11, 9
cout << Derived::funcD() #8\n ;

}
virtual void funcE(int) {

cout << "Derived::funcE(int) #9\n";

cout << FDerived2::funcE() #10\n ;
}
void funcE(int, int) {

cout << "FDerived2::funcE(int, int) #11\n";

26-180

Explicit: 1,2,7,8,9
Implicit: 3,4,5,6

}
};

}
};

Explicitly Defined Functionsp y
class Base {
public:

void funcA() { cout << "Base::funcA() #1\n"; }
Virtual table: 2, 4, 5, 6

void funcA() { cout << Base::funcA() #1\n ; }
virtual void funcB() { cout << "Base::funcB() #2\n"; }
void funcC() { cout << "Base::funcC() #3\n"; }
virtual void funcD() { cout << "Base::funcD() #4\n"; }

Explicit: 1,2,3,4,5,6

virtual void funcE() { cout << "Base::funcE() #5\n"; }
virtual void funcE(int, int) { cout << "Base::funcE(int,int) #6\n"; }

};
Explicit: 1,2,7,8,9
Implicit: 3,4,5,6Virtual table: 2, 8, 5, 6, 9

class FDerived1: public Derived {
};

class Derived: public Base {
public:

void funcC() {
"D i d f C() #7\ " i 2 i i {

Virtual table: 2, 8, 5, 6, 9

cout << "Derived::funcC() #7\n";
}
void funcD() {

cout << "Derived::funcD() #8\n";

class FDerived2: public Derived {
public:

void funcE() {
cout << "FDerived2::funcE() #10\n";

Virtual table: 2, 8, 10, 11, 9
cout << Derived::funcD() #8\n ;

}
virtual void funcE(int) {

cout << "Derived::funcE(int) #9\n";

cout << FDerived2::funcE() #10\n ;
}
void funcE(int, int) {

cout << "FDerived2::funcE(int, int) #11\n";

26-180

Explicit: 1,2,7,8,9
Implicit: 3,4,5,6

Explicit: 1,2,7,8,10,11
Implicit: 3,4,5,6,9

}
};

}
};

Polymorphismy p
 Polymorphism:

















26-20

Polymorphismy p
 Polymorphism: a single identifier stands for different things

















26-20

Polymorphismy p
 Polymorphism: a single identifier stands for different things

 C++ implements polymorphism in three ways














26-20

Polymorphismy p
 Polymorphism: a single identifier stands for different things

 C++ implements polymorphism in three ways
 Overloading – ad hoc / static polymorphism, static dispatch

one name stands for several functions












26-20

Polymorphismy p
 Polymorphism: a single identifier stands for different things

 C++ implements polymorphism in three ways
 Overloading – ad hoc / static polymorphism, static dispatch

one name stands for several functions
 Templates – parametric polymorphism

one name stands for several types or functions










26-20

Polymorphismy p
 Polymorphism: a single identifier stands for different things

 C++ implements polymorphism in three ways
 Overloading – ad hoc / static polymorphism, static dispatch

one name stands for several functions
 Templates – parametric polymorphism

one name stands for several types or functions
 Virtual functions pure / dynamic polymorphism dynamic dispatch Virtual functions – pure / dynamic polymorphism, dynamic dispatch

one pointer (reference) refers to any base or derived class objects








26-20

Polymorphismy p
 Polymorphism: a single identifier stands for different things

 C++ implements polymorphism in three ways
 Overloading – ad hoc / static polymorphism, static dispatch

one name stands for several functions
 Templates – parametric polymorphism

one name stands for several types or functions
 Virtual functions pure / dynamic polymorphism dynamic dispatch Virtual functions – pure / dynamic polymorphism, dynamic dispatch

one pointer (reference) refers to any base or derived class objects
use object to select code







26-20

Polymorphismy p
 Polymorphism: a single identifier stands for different things

 C++ implements polymorphism in three ways
 Overloading – ad hoc / static polymorphism, static dispatch

one name stands for several functions
 Templates – parametric polymorphism

one name stands for several types or functions
 Virtual functions pure / dynamic polymorphism dynamic dispatch Virtual functions – pure / dynamic polymorphism, dynamic dispatch

one pointer (reference) refers to any base or derived class objects
use object to select code

 Many OO languages does not support parameterized polymorphism,
e.g. JAVA before J2SE 5.0 (2004), it is called Generics in Java





26-20

Polymorphismy p
 Polymorphism: a single identifier stands for different things

 C++ implements polymorphism in three ways
 Overloading – ad hoc / static polymorphism, static dispatch

one name stands for several functions
 Templates – parametric polymorphism

one name stands for several types or functions
 Virtual functions pure / dynamic polymorphism dynamic dispatch Virtual functions – pure / dynamic polymorphism, dynamic dispatch

one pointer (reference) refers to any base or derived class objects
use object to select code

 Many OO languages does not support parameterized polymorphism,
e.g. JAVA before J2SE 5.0 (2004), it is called Generics in Java

 Is there any drawback to pure polymorphism? Is there any drawback to pure polymorphism?
Virtual function calls are less efficient than non-virtual functions



26-20

Polymorphismy p
 Polymorphism: a single identifier stands for different things

 C++ implements polymorphism in three ways
 Overloading – ad hoc / static polymorphism, static dispatch

one name stands for several functions
 Templates – parametric polymorphism

one name stands for several types or functions
 Virtual functions pure / dynamic polymorphism dynamic dispatch Virtual functions – pure / dynamic polymorphism, dynamic dispatch

one pointer (reference) refers to any base or derived class objects
use object to select code

 Many OO languages does not support parameterized polymorphism,
e.g. JAVA before J2SE 5.0 (2004), it is called Generics in Java

 Is there any drawback to pure polymorphism? Is there any drawback to pure polymorphism?
Virtual function calls are less efficient than non-virtual functions

 What are the benefits from polymorphism?

26-20

p y p
Superior abstraction of object usage (code reuse),
old codes call new codes (usage prediction)

Code Reuse Paradigmsg
 There are basically two major types of code reuses:

26-21

Code Reuse Paradigmsg
 There are basically two major types of code reuses:

 Library subroutine calls: put all repeated procedures into a Library subroutine calls: put all repeated procedures into a
function and call it whenever necessary. The codes gathered into
the function is to be reused.

26-21

Code Reuse Paradigmsg
 There are basically two major types of code reuses:

 Library subroutine calls: put all repeated procedures into a Library subroutine calls: put all repeated procedures into a
function and call it whenever necessary. The codes gathered into
the function is to be reused.
Note: basic inheritance syntax would automatically include all

data members and member functions of parent classes into
the child class This is also a similar type of program reusethe child class. This is also a similar type of program reuse.

26-21

Code Reuse Paradigmsg
 There are basically two major types of code reuses:

 Library subroutine calls: put all repeated procedures into a Library subroutine calls: put all repeated procedures into a
function and call it whenever necessary. The codes gathered into
the function is to be reused.
Note: basic inheritance syntax would automatically include all

data members and member functions of parent classes into
the child class This is also a similar type of program reusethe child class. This is also a similar type of program reuse.

 Factoring: sometimes, we substitute a particular module in a
program with a replacement. In this case, the other part of system p g p p y
is reused.

26-21

Code Reuse Paradigmsg
 There are basically two major types of code reuses:

 Library subroutine calls: put all repeated procedures into a Library subroutine calls: put all repeated procedures into a
function and call it whenever necessary. The codes gathered into
the function is to be reused.
Note: basic inheritance syntax would automatically include all

data members and member functions of parent classes into
the child class This is also a similar type of program reusethe child class. This is also a similar type of program reuse.

 Factoring: sometimes, we substitute a particular module in a
program with a replacement. In this case, the other part of system p g p p y
is reused.
Note: ex. 1. OS patches or device drivers replace the old module

d th ll hit tand reuse the overall architecture.

26-21

Code Reuse Paradigmsg
 There are basically two major types of code reuses:

 Library subroutine calls: put all repeated procedures into a Library subroutine calls: put all repeated procedures into a
function and call it whenever necessary. The codes gathered into
the function is to be reused.
Note: basic inheritance syntax would automatically include all

data members and member functions of parent classes into
the child class This is also a similar type of program reusethe child class. This is also a similar type of program reuse.

 Factoring: sometimes, we substitute a particular module in a
program with a replacement. In this case, the other part of system p g p p y
is reused.
Note: ex. 1. OS patches or device drivers replace the old module

d th ll hit t
2. Application frameworks provide the overall

application architectures while programmer supply

and reuse the overall architecture.

26-21

app cat o a c tectu es w e p og a e supp y
minor modifications and features.

Code Reuse Paradigmsg
 There are basically two major types of code reuses:

 Library subroutine calls: put all repeated procedures into a Library subroutine calls: put all repeated procedures into a
function and call it whenever necessary. The codes gathered into
the function is to be reused.
Note: basic inheritance syntax would automatically include all

data members and member functions of parent classes into
the child class This is also a similar type of program reusethe child class. This is also a similar type of program reuse.

 Factoring: sometimes, we substitute a particular module in a
program with a replacement. In this case, the other part of system p g p p y
is reused.
Note: ex. 1. OS patches or device drivers replace the old module

d th ll hit t
2. Application frameworks provide the overall

application architectures while programmer supply

and reuse the overall architecture.

26-21

app cat o a c tectu es w e p og a e supp y
minor modifications and features.

interface inheritance also reuses the other part of program.

Old Codes Call New Codes
 Make existent old codes call non-existent new codes


26-22

Old Codes Call New Codes
 Make existent old codes call non-existent new codes
 Using data (object) to select codes Using data (object) to select codes

26-22

Old Codes Call New Codes
 Make existent old codes call non-existent new codes
 Using data (object) to select codes Using data (object) to select codes
 While writing the following codes, the programmer might not know

which display() function is to be called. p y()

26-22

Old Codes Call New Codes
 Make existent old codes call non-existent new codes
 Using data (object) to select codes Using data (object) to select codes
 While writing the following codes, the programmer might not know

which display() function is to be called.
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called p y()p y()
might not exist at the point of writing.

26-22

Old Codes Call New Codes
 Make existent old codes call non-existent new codes
 Using data (object) to select codes Using data (object) to select codes
 While writing the following codes, the programmer might not know

which display() function is to be called.
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called p y()p y()
might not exist at the point of writing.

p y()
might not exist at the point of writing. He only knows that the
object pointed by database[i] must be inherited from Person.

26-22

Old Codes Call New Codes
 Make existent old codes call non-existent new codes
 Using data (object) to select codes Using data (object) to select codes
 While writing the following codes, the programmer might not know

which display() function is to be called.
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called p y()p y()
might not exist at the point of writing.

p y()
might not exist at the point of writing. He only knows that the
object pointed by database[i] must be inherited from Person.

p y()
might not exist at the point of writing. He only knows that the
object pointed by database[i] must be inherited from Person. The
semantics of the virtual function display() is largely determined in
designing the class Person. The derived class should not change it.

26-22

Old Codes Call New Codes
 Make existent old codes call non-existent new codes
 Using data (object) to select codes Using data (object) to select codes
 While writing the following codes, the programmer might not know

which display() function is to be called.
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called p y()p y()
might not exist at the point of writing.

p y()
might not exist at the point of writing. He only knows that the
object pointed by database[i] must be inherited from Person.

p y()
might not exist at the point of writing. He only knows that the
object pointed by database[i] must be inherited from Person. The
semantics of the virtual function display() is largely determined in
designing the class Person. The derived class should not change it.

void show(Person *database[3]) {void show(Person *database[3]) {
for (int i=0; i<3; i++)

database[i]display();
}

26-22

Old Codes Call New Codes
 Make existent old codes call non-existent new codes
 Using data (object) to select codes Using data (object) to select codes
 While writing the following codes, the programmer might not know

which display() function is to be called.
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called p y()p y()
might not exist at the point of writing.

p y()
might not exist at the point of writing. He only knows that the
object pointed by database[i] must be inherited from Person.

p y()
might not exist at the point of writing. He only knows that the
object pointed by database[i] must be inherited from Person. The

ld d

semantics of the virtual function display() is largely determined in
designing the class Person. The derived class should not change it.

void show(Person *database[3]) { old codes
closed for modification
but open for extension

void show(Person *database[3]) {
for (int i=0; i<3; i++)

database[i]display();
but open for extension}

26-22

Old Codes Call New Codes
 Make existent old codes call non-existent new codes
 Using data (object) to select codes Using data (object) to select codes
 While writing the following codes, the programmer might not know

which display() function is to be called.
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called p y()p y()
might not exist at the point of writing.

p y()
might not exist at the point of writing. He only knows that the
object pointed by database[i] must be inherited from Person.

p y()
might not exist at the point of writing. He only knows that the
object pointed by database[i] must be inherited from Person. The

ld d

semantics of the virtual function display() is largely determined in
designing the class Person. The derived class should not change it.

void show(Person *database[3]) { old codes
closed for modification
but open for extension

void show(Person *database[3]) {
for (int i=0; i<3; i++)

database[i]display();
but open for extension}

Later, if we derive a class Staff from Person, and implement a new
member function Staff::display(),

26-22

p y(),

Old Codes Call New Codes
 Make existent old codes call non-existent new codes
 Using data (object) to select codes Using data (object) to select codes
 While writing the following codes, the programmer might not know

which display() function is to be called.
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called p y()p y()
might not exist at the point of writing.

p y()
might not exist at the point of writing. He only knows that the
object pointed by database[i] must be inherited from Person.

p y()
might not exist at the point of writing. He only knows that the
object pointed by database[i] must be inherited from Person. The

ld d

semantics of the virtual function display() is largely determined in
designing the class Person. The derived class should not change it.

void show(Person *database[3]) { old codes
closed for modification
but open for extension

void show(Person *database[3]) {
for (int i=0; i<3; i++)

database[i]display();
but open for extension}

Later, if we derive a class Staff from Person, and implement a new
member function Staff::display(),

26-22

new codes
p y(),

Old Codes Call New Codes
 Make existent old codes call non-existent new codes
 Using data (object) to select codes Using data (object) to select codes
 While writing the following codes, the programmer might not know

which display() function is to be called.
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called p y()p y()
might not exist at the point of writing.

p y()
might not exist at the point of writing. He only knows that the
object pointed by database[i] must be inherited from Person.

p y()
might not exist at the point of writing. He only knows that the
object pointed by database[i] must be inherited from Person. The

ld d

semantics of the virtual function display() is largely determined in
designing the class Person. The derived class should not change it.

void show(Person *database[3]) { old codes
closed for modification
but open for extension

void show(Person *database[3]) {
for (int i=0; i<3; i++)

database[i]display();
but open for extension}

Later, if we derive a class Staff from Person, and implement a new
member function Staff::display(),

26-22

new codesdatabase[0] = new Staff(…); …
show(database);

p y(),

Two Major Code Reuses of Inheritancej
 Code inheritance: reuse the data and codes in the base class




26-23

Two Major Code Reuses of Inheritancej
 Code inheritance: reuse the data and codes in the base class

I f i h i h d h l () h Interface inheritance: reuse the codes that employ (operate) the
base class objects



26-23

Two Major Code Reuses of Inheritancej
 Code inheritance: reuse the data and codes in the base class

I f i h i h d h l () h Interface inheritance: reuse the codes that employ (operate) the
base class objects

 The first one reuses only considerable amount of old codes.
The second one usually reuses a vast amount of old codes.

26-23

Two Major Code Reuses of Inheritancej
 Code inheritance: reuse the data and codes in the base class

I f i h i h d h l () h Interface inheritance: reuse the codes that employ (operate) the
base class objects

 The first one reuses only considerable amount of old codes.
The second one usually reuses a vast amount of old codes.

 Interface inheritance is a very important and effective way of
reusing existent codes. g

26-23

Two Major Code Reuses of Inheritancej
 Code inheritance: reuse the data and codes in the base class

I f i h i h d h l () h Interface inheritance: reuse the codes that employ (operate) the
base class objects

 The first one reuses only considerable amount of old codes.
The second one usually reuses a vast amount of old codes.

 Interface inheritance is a very important and effective way of
reusing existent codes.

 Interface inheritance is a very important and effective way of
reusing existent codes. This feature makes Object Oriented g
programming successful in designing a framework, which provides
a common software development platform,

26-23

Two Major Code Reuses of Inheritancej
 Code inheritance: reuse the data and codes in the base class

I f i h i h d h l () h Interface inheritance: reuse the codes that employ (operate) the
base class objects

 The first one reuses only considerable amount of old codes.
The second one usually reuses a vast amount of old codes.

 Interface inheritance is a very important and effective way of
reusing existent codes.

 Interface inheritance is a very important and effective way of
reusing existent codes. This feature makes Object Oriented

 Interface inheritance is a very important and effective way of
reusing existent codes. This feature makes Object Oriented g
programming successful in designing a framework, which provides
a common software development platform,
programming successful in designing a framework, which provides
a common software development platform, ex. Window GUI

i t th i t id i i tifienvironment, math environment, video processing, or scientific
simulation environment.

26-23

Two Major Code Reuses of Inheritancej
 Code inheritance: reuse the data and codes in the base class

I f i h i h d h l () h Interface inheritance: reuse the codes that employ (operate) the
base class objects

 The first one reuses only considerable amount of old codes.
The second one usually reuses a vast amount of old codes.

 Interface inheritance is a very important and effective way of
reusing existent codes.

 Interface inheritance is a very important and effective way of
reusing existent codes. This feature makes Object Oriented

 Interface inheritance is a very important and effective way of
reusing existent codes. This feature makes Object Oriented

 Interface inheritance is a very important and effective way of
reusing existent codes. This feature makes Object Oriented g
programming successful in designing a framework, which provides
a common software development platform,
programming successful in designing a framework, which provides
a common software development platform, ex. Window GUI

i t th i t id i i tifi

programming successful in designing a framework, which provides
a common software development platform, ex. Window GUI

i t th i t id i i tifienvironment, math environment, video processing, or scientific
simulation environment.
environment, math environment, video processing, or scientific
simulation environment. Using predefined interfaces (abstract
classes in C++) a framework can support all utility functions to an

26-23

classes in C++), a framework can support all utility functions to an
empty application project.

Using C++ Polymorphismg y p

Sh ld k (i t) f ti i t l? Should you make every (non-private) function virtual?










26-24

Using C++ Polymorphismg y p

Sh ld k (i t) f ti i t l? Should you make every (non-private) function virtual?
 Some C++ programmers do.








26-24

Using C++ Polymorphismg y p

Sh ld k (i t) f ti i t l? Should you make every (non-private) function virtual?
 Some C++ programmers do.
 Others do so only when it is necessary.






26-24

Using C++ Polymorphismg y p

Sh ld k (i t) f ti i t l? Should you make every (non-private) function virtual?
 Some C++ programmers do.
 Others do so only when it is necessary.
 Java's member function are all virtual.




26-24

Using C++ Polymorphismg y p

Sh ld k (i t) f ti i t l? Should you make every (non-private) function virtual?
 Some C++ programmers do.
 Others do so only when it is necessary.
 Java's member function are all virtual.
 Doing so ensures the pure OO semantics and have good semantic

compatibility if you are using multiple OO languages. p y y g p g g


26-24

Using C++ Polymorphismg y p

Sh ld k (i t) f ti i t l? Should you make every (non-private) function virtual?
 Some C++ programmers do.
 Others do so only when it is necessary.
 Java's member function are all virtual.
 Doing so ensures the pure OO semantics and have good semantic

compatibility if you are using multiple OO languages. p y y g p g g
 You can change to non-virtual (compile-time binding makes the

code run faster) when profiling shows that the overhead comes) p g
from the virtual function calls

26-24

Virtual Function vs. Inline Function
 Virtual function and inline function are contradicting

language featureslanguage features
















26-25

Virtual Function vs. Inline Function
 Virtual function and inline function are contradicting

language featureslanguage features
 Virtual function requires runtime binding but inline function

requires compile-time code expansionq p p














26-25

Virtual Function vs. Inline Function
 Virtual function and inline function are contradicting

language featureslanguage features
 Virtual function requires runtime binding but inline function

requires compile-time code expansionq p p
 However, you will see in many places virtual inline

combinations, ex.,












26-25

Virtual Function vs. Inline Function
 Virtual function and inline function are contradicting

language featureslanguage features
 Virtual function requires runtime binding but inline function

requires compile-time code expansionq p p
 However, you will see in many places virtual inline

combinations, ex.,
class Base {

…
virtual ~Base() {}
…

};


26-25

Virtual Function vs. Inline Function
 Virtual function and inline function are contradicting

language featureslanguage features
 Virtual function requires runtime binding but inline function

requires compile-time code expansionq p p
 However, you will see in many places virtual inline

combinations, ex.,
class Base {

…
virtual ~Base() {}
…

};
 Why??

26-25

y

Virtual Function vs. Inline Function
 Virtual function and inline function are contradicting

language featureslanguage features
 Virtual function requires runtime binding but inline function

requires compile-time code expansionq p p
 However, you will see in many places virtual inline

combinations, ex.,
class Base {

…
virtual ~Base() {}
…

};
 Why??

26-25

y
Virtual function does not always use dynamic binding.
This is a C++ specific feature.

Virtual Function vs. Static Function
 Virtual function and static function are also contradicting

l f tlanguage features








26-26

Virtual Function vs. Static Function
 Virtual function and static function are also contradicting

l f tlanguage features
 Static function is a class method shared among all objects of the

same class Calling a static function does NOT mean sending asame class. Calling a static function does NOT mean sending a
message to an object. There is no hidden “this” pointer in making
a static function call.a static function call.







26-26

Virtual Function vs. Static Function
 Virtual function and static function are also contradicting

l f tlanguage features
 Static function is a class method shared among all objects of the

same class Calling a static function does NOT mean sending asame class. Calling a static function does NOT mean sending a
message to an object. There is no hidden “this” pointer in making
a static function call.a static function call.

 It is, therefore, completely useless to put a static function in the
virtual function table. (calling a static function does not require a (g q
target object, and thus the virtual function table within it)





26-26

Virtual Function vs. Static Function
 Virtual function and static function are also contradicting

l f tlanguage features
 Static function is a class method shared among all objects of the

same class Calling a static function does NOT mean sending asame class. Calling a static function does NOT mean sending a
message to an object. There is no hidden “this” pointer in making
a static function call.a static function call.

 It is, therefore, completely useless to put a static function in the
virtual function table. (calling a static function does not require a (g q
target object, and thus the virtual function table within it)

 A static function cannot be virtual. Calling a static function
always uses static binding. No overriding with static function.



26-26

Virtual Function vs. Static Function
 Virtual function and static function are also contradicting

l f tlanguage features
 Static function is a class method shared among all objects of the

same class Calling a static function does NOT mean sending asame class. Calling a static function does NOT mean sending a
message to an object. There is no hidden “this” pointer in making
a static function call.a static function call.

 It is, therefore, completely useless to put a static function in the
virtual function table. (calling a static function does not require a (g q
target object, and thus the virtual function table within it)

 A static function cannot be virtual. Calling a static function
always uses static binding. No overriding with static function.

 You can redefine a static function in a derived class. The static
f i i h b l i h d d l

26-26

function in the base class is hided as usual.

Virtual Destructors
 Base classes and derived classes may each have destructors

26-27

Virtual Destructors
 Base classes and derived classes may each have destructors

Person::~Person() {e so e so () {
delete[] m_name;

}
Faculty::~Faculty() {y y() {

delete[] m_rank;
}

26-27

Virtual Destructors
 Base classes and derived classes may each have destructors

Person::~Person() {e so e so () {
delete[] m_name;

}
Faculty::~Faculty() {y y() {

delete[] m_rank;
}

 What happens in this scenario? What happens in this scenario?

26-27

Virtual Destructors
 Base classes and derived classes may each have destructors

Person::~Person() {e so e so () {
delete[] m_name;

}
Faculty::~Faculty() {y y() {

delete[] m_rank;
}

 What happens in this scenario? What happens in this scenario?
Person *database[3];
Faculty *prof = new Faculty("Ron", 40, "INS312", "professor");
database[0] = prof;[] p ;
delete database[0];

26-27

Virtual Destructors
 Base classes and derived classes may each have destructors

Person::~Person() {e so e so () {
delete[] m_name;

}
Faculty::~Faculty() {y y() {

delete[] m_rank;
}

 What happens in this scenario? What happens in this scenario?
Person *database[3];
Faculty *prof = new Faculty("Ron", 40, "INS312", "professor");
database[0] = prof;[] p ;
delete database[0];

 If the destructor of Person is non-virtual, only the destructor of Person will be
called, the Faculty part of the object will not be destructed suitably., y p j y

26-27

Virtual Destructors
 Base classes and derived classes may each have destructors

Person::~Person() {e so e so () {
delete[] m_name;

}
Faculty::~Faculty() {y y() {

delete[] m_rank;
}

 What happens in this scenario? What happens in this scenario?
Person *database[3];
Faculty *prof = new Faculty("Ron", 40, "INS312", "professor");
database[0] = prof;[] p ;
delete database[0];

 If the destructor of Person is non-virtual, only the destructor of Person will be
called, the Faculty part of the object will not be destructed suitably., y p j y

 The solution is simple

26-27

Virtual Destructors
 Base classes and derived classes may each have destructors

Person::~Person() {e so e so () {
delete[] m_name;

}
Faculty::~Faculty() {y y() {

delete[] m_rank;
}

 What happens in this scenario? What happens in this scenario?
Person *database[3];
Faculty *prof = new Faculty("Ron", 40, "INS312", "professor");
database[0] = prof;[] p ;
delete database[0];

 If the destructor of Person is non-virtual, only the destructor of Person will be
called, the Faculty part of the object will not be destructed suitably., y p j y

 The solution is simple
virtual ~Person(); // virtual destructor

26-27

Virtual Destructors
 Base classes and derived classes may each have destructors

Person::~Person() {e so e so () {
delete[] m_name;

}
Faculty::~Faculty() {y y() {

delete[] m_rank;
}

 What happens in this scenario? What happens in this scenario?
Person *database[3];
Faculty *prof = new Faculty("Ron", 40, "INS312", "professor");
database[0] = prof;[] p ;
delete database[0];

 If the destructor of Person is non-virtual, only the destructor of Person will be
called, the Faculty part of the object will not be destructed suitably., y p j y

 The solution is simple
virtual ~Person(); // virtual destructor

26-27

 Note: This syntax makes every destructor of every derived class virtual even
though the names do not match. Visual Studio automatically does this.

Invoking a Virtual function in Ctor/Dtorg
 When invoking any virtual function of this class from inside a

constructor or destructor (explicitly through this pointer orconstructor or destructor (explicitly through this pointer or
implicitly), compile-time binding will determine which method is
called as if the virtual keyword was not there.





26-28

Invoking a Virtual function in Ctor/Dtorg
 When invoking any virtual function of this class from inside a

constructor or destructor (explicitly through this pointer orconstructor or destructor (explicitly through this pointer or
implicitly), compile-time binding will determine which method is
called as if the virtual keyword was not there.

 In the process of constructing an object, the virtual table may be
incompletely set up by the constructor especially for a derived
object. Also, the virtual table may be partially or completely
destroyed by the destructor in the process of destructing an object
instanceinstance.



26-28

Invoking a Virtual function in Ctor/Dtorg
 When invoking any virtual function of this class from inside a

constructor or destructor (explicitly through this pointer orconstructor or destructor (explicitly through this pointer or
implicitly), compile-time binding will determine which method is
called as if the virtual keyword was not there.

 In the process of constructing an object, the virtual table may be
incompletely set up by the constructor especially for a derived
object. Also, the virtual table may be partially or completely
destroyed by the destructor in the process of destructing an object
instanceinstance.

 It is not reasonable to expect runtime binding to work properly
under these conditionsunder these conditions.

26-28

Single / Double Dispatchg p
x->message(y);





26-29

Single / Double Dispatchg p
x->message(y);

 C++ (virtual) function provides only single dispatch: the decision C++ (virtual) function provides only single dispatch: the decision
of which message() to call is based on the type of x (*x)





26-29

Single / Double Dispatchg p
x->message(y);

 C++ (virtual) function provides only single dispatch: the decision C++ (virtual) function provides only single dispatch: the decision
of which message() to call is based on the type of x (*x)

 Double dispatch: the decision is based not only on the type of x but Double dispatch: the decision is based not only on the type of x but
also on the type of y, C++ does not support double dispatch



26-29

Single / Double Dispatchg p
x->message(y);

 C++ (virtual) function provides only single dispatch: the decision C++ (virtual) function provides only single dispatch: the decision
of which message() to call is based on the type of x (*x)

 Double dispatch: the decision is based not only on the type of x but Double dispatch: the decision is based not only on the type of x but
also on the type of y, C++ does not support double dispatch

 Example: Single Dispatch Example: Single Dispatch

26-29

Single / Double Dispatchg p
x->message(y);

 C++ (virtual) function provides only single dispatch: the decision C++ (virtual) function provides only single dispatch: the decision
of which message() to call is based on the type of x (*x)

 Double dispatch: the decision is based not only on the type of x but Double dispatch: the decision is based not only on the type of x but
also on the type of y, C++ does not support double dispatch

 Example: Single Dispatch Example: Single Dispatch

Asteroid
+virtual collideWith(SpaceShip*)(p p)
+virtual collideWith(ApolloSpacecraft*)

26-29

Single / Double Dispatchg p
x->message(y);

 C++ (virtual) function provides only single dispatch: the decision C++ (virtual) function provides only single dispatch: the decision
of which message() to call is based on the type of x (*x)

 Double dispatch: the decision is based not only on the type of x but Double dispatch: the decision is based not only on the type of x but
also on the type of y, C++ does not support double dispatch

 Example: Single Dispatch Example: Single Dispatch

Asteroid
+virtual collideWith(SpaceShip*) overloading(p p)
+virtual collideWith(ApolloSpacecraft*)

overloading

26-29

Single / Double Dispatchg p
x->message(y);

 C++ (virtual) function provides only single dispatch: the decision C++ (virtual) function provides only single dispatch: the decision
of which message() to call is based on the type of x (*x)

 Double dispatch: the decision is based not only on the type of x but Double dispatch: the decision is based not only on the type of x but
also on the type of y, C++ does not support double dispatch

 Example: Single Dispatch Example: Single Dispatch

Asteroid
+virtual collideWith(SpaceShip*) overloading(p p)
+virtual collideWith(ApolloSpacecraft*)

overloading

 +collideWith(SpaceShip*)

ExplodingAsteroid

+collideWith(ApolloSpacecraft*)

26-29

+collideWith(ApolloSpacecraft*)

Single / Double Dispatchg p
x->message(y);

 C++ (virtual) function provides only single dispatch: the decision C++ (virtual) function provides only single dispatch: the decision
of which message() to call is based on the type of x (*x)

 Double dispatch: the decision is based not only on the type of x but Double dispatch: the decision is based not only on the type of x but
also on the type of y, C++ does not support double dispatch

 Example: Single Dispatch Example: Single Dispatch

Asteroid
+virtual collideWith(SpaceShip*) overloading(p p)
+virtual collideWith(ApolloSpacecraft*)

overloading

 +collideWith(SpaceShip*)

ExplodingAsteroid

+collideWith(ApolloSpacecraft*)

26-29

overriding, overloading

+collideWith(ApolloSpacecraft*)

Single / Double Dispatchg p
x->message(y);

 C++ (virtual) function provides only single dispatch: the decision C++ (virtual) function provides only single dispatch: the decision
of which message() to call is based on the type of x (*x)

 Double dispatch: the decision is based not only on the type of x but Double dispatch: the decision is based not only on the type of x but
also on the type of y, C++ does not support double dispatch

 Example: Single Dispatch Example: Single Dispatch
SpaceShip

Asteroid
+virtual collideWith(SpaceShip*) overloading

ApolloSpacecraft
(p p)

+virtual collideWith(ApolloSpacecraft*)
overloading

 +collideWith(SpaceShip*)

ExplodingAsteroid

+collideWith(ApolloSpacecraft*)

26-29

overriding, overloading

+collideWith(ApolloSpacecraft*)

Single / Double Dispatchg p
x->message(y);

 C++ (virtual) function provides only single dispatch: the decision C++ (virtual) function provides only single dispatch: the decision
of which message() to call is based on the type of x (*x)

 Double dispatch: the decision is based not only on the type of x but Double dispatch: the decision is based not only on the type of x but
also on the type of y, C++ does not support double dispatch

 Example: Single Dispatch Example: Single Dispatch
SpaceShip

Asteroid
+virtual collideWith(SpaceShip*) overloading

ApolloSpacecraft
(p p)

+virtual collideWith(ApolloSpacecraft*)
overloading

Asteroid *asteroid = new ExplodingAsteroid;Asteroid asteroid new ExplodingAsteroid;
SpaceShip *spaceShip = new ApolloSpacecraft;
 +collideWith(SpaceShip*)

ExplodingAsteroid

+collideWith(ApolloSpacecraft*)

26-29

overriding, overloading

+collideWith(ApolloSpacecraft*)

Single / Double Dispatchg p
x->message(y);

 C++ (virtual) function provides only single dispatch: the decision C++ (virtual) function provides only single dispatch: the decision
of which message() to call is based on the type of x (*x)

 Double dispatch: the decision is based not only on the type of x but Double dispatch: the decision is based not only on the type of x but
also on the type of y, C++ does not support double dispatch

 Example: Single Dispatch Example: Single Dispatch
SpaceShip

Asteroid
+virtual collideWith(SpaceShip*) overloading

ApolloSpacecraft
(p p)

+virtual collideWith(ApolloSpacecraft*)
overloading

Asteroid *asteroid = new ExplodingAsteroid;Asteroid asteroid new ExplodingAsteroid;
SpaceShip *spaceShip = new ApolloSpacecraft;
asteroid->collideWith(spaceShip);

ExplodingAsteroid

+collideWith(ApolloSpacecraft*)
+collideWith(SpaceShip*)

26-29

overriding, overloading
dynamic dispatch static dispatch

+collideWith(ApolloSpacecraft*)

Single / Double Dispatchg p
x->message(y);

 C++ (virtual) function provides only single dispatch: the decision C++ (virtual) function provides only single dispatch: the decision
of which message() to call is based on the type of x (*x)

 Double dispatch: the decision is based not only on the type of x but Double dispatch: the decision is based not only on the type of x but
also on the type of y, C++ does not support double dispatch

 Example: Single Dispatch Example: Single Dispatch
SpaceShip

Asteroid
+virtual collideWith(SpaceShip*) overloading

ApolloSpacecraft
(p p)

+virtual collideWith(ApolloSpacecraft*)
overloading

Asteroid *asteroid = new ExplodingAsteroid;Asteroid asteroid new ExplodingAsteroid;
SpaceShip *spaceShip = new ApolloSpacecraft;
asteroid->collideWith(spaceShip);
delete asteroid; delete spaceShip;

ExplodingAsteroid

+collideWith(ApolloSpacecraft*)
+collideWith(SpaceShip*)

26-29

overriding, overloading
delete asteroid; delete spaceShip;

dynamic dispatch static dispatch

+collideWith(ApolloSpacecraft*)

Double Dispatch (cont’d)p ()


26-30

Double Dispatch (cont’d)p ()
SpaceShipp p

+virtual collideWith(Asteroid* a)

26-30

Double Dispatch (cont’d)p ()
SpaceShipp p

+virtual collideWith(Asteroid* a)

+collideWith(Asteroid* a)
ApolloSpacecraft

26-30

Double Dispatch (cont’d)p ()
SpaceShipp p

+virtual collideWith(Asteroid* a)
a->collideWith(this);

+collideWith(Asteroid* a)
ApolloSpacecraft

26-30

Double Dispatch (cont’d)p ()
SpaceShipp p

+virtual collideWith(Asteroid* a)
a->collideWith(this);

a->collideWith(this);
+collideWith(Asteroid* a)

ApolloSpacecraft

();

26-30

Double Dispatch (cont’d)p ()
SpaceShipp p

+virtual collideWith(Asteroid* a)
a->collideWith(this);

a->collideWith(this);
+collideWith(Asteroid* a)

ApolloSpacecraft

Asteroid
+ i t l llid With(S Shi *)

();

+virtual collideWith(SpaceShip*)
+virtual collideWith(ApolloSpacecraft*)

26-30

Double Dispatch (cont’d)p ()
SpaceShipp p

+virtual collideWith(Asteroid* a)
a->collideWith(this);

a->collideWith(this);
+collideWith(Asteroid* a)

ApolloSpacecraft

Asteroid
+ i t l llid With(S Shi *)

();

+virtual collideWith(SpaceShip*)
+virtual collideWith(ApolloSpacecraft*)

+collideWith(SpaceShip*)

ExplodingAsteroid

26-30

+collideWith(ApolloSpacecraft*)
(p p)

Double Dispatch (cont’d)p ()
SpaceShipp p

+virtual collideWith(Asteroid* a)
a->collideWith(this);

a->collideWith(this);
+collideWith(Asteroid* a)

ApolloSpacecraft

Asteroid
+ i t l llid With(S Shi *)

Asteroid *asteroid = new ExplodingAsteroid;

();

+virtual collideWith(SpaceShip*)
+virtual collideWith(ApolloSpacecraft*)

SpaceShip *spaceShip = new ApolloSpacecraft;

+collideWith(SpaceShip*)

ExplodingAsteroid

26-30

+collideWith(ApolloSpacecraft*)
(p p)

Double Dispatch (cont’d)p ()
SpaceShipp p

+virtual collideWith(Asteroid* a)
a->collideWith(this);

a->collideWith(this);
+collideWith(Asteroid* a)

ApolloSpacecraft

Asteroid
+ i t l llid With(S Shi *)

Asteroid *asteroid = new ExplodingAsteroid;

();

+virtual collideWith(SpaceShip*)
+virtual collideWith(ApolloSpacecraft*)

SpaceShip *spaceShip = new ApolloSpacecraft;

asteroid->collideWith(spaceShip);

 ExplodingAsteroid
+collideWith(SpaceShip*)

26-30

+collideWith(ApolloSpacecraft*)
(p p)

Double Dispatch (cont’d)p ()
SpaceShipp p

+virtual collideWith(Asteroid* a)
a->collideWith(this);

a->collideWith(this);
+collideWith(Asteroid* a)

ApolloSpacecraft

Asteroid
+ i t l llid With(S Shi *)

Asteroid *asteroid = new ExplodingAsteroid;

();

+virtual collideWith(SpaceShip*)
+virtual collideWith(ApolloSpacecraft*)

SpaceShip *spaceShip = new ApolloSpacecraft;

asteroid->collideWith(spaceShip);
static dispatch

 ExplodingAsteroid
+collideWith(SpaceShip*)

26-30

 dynamic dispatch

+collideWith(ApolloSpacecraft*)
(p p)

Double Dispatch (cont’d)p ()
SpaceShipp p

+virtual collideWith(Asteroid* a)
a->collideWith(this);

+collideWith(Asteroid* a)
a->collideWith(this);

ApolloSpacecraft

Asteroid
+ i t l llid With(S Shi *)

Asteroid *asteroid = new ExplodingAsteroid;

();

+virtual collideWith(SpaceShip*)
+virtual collideWith(ApolloSpacecraft*)

SpaceShip *spaceShip = new ApolloSpacecraft;

asteroid->collideWith(spaceShip);
static dispatch

spaceShip->collideWith(asteroid);ExplodingAsteroid
+collideWith(SpaceShip*)

26-30

 dynamic dispatch

+collideWith(ApolloSpacecraft*)
(p p)

Double Dispatch (cont’d)p ()
SpaceShipp p

+virtual collideWith(Asteroid* a)
a->collideWith(this);

+collideWith(Asteroid* a)
a->collideWith(this);

ApolloSpacecraft

Asteroid
+ i t l llid With(S Shi *)

Asteroid *asteroid = new ExplodingAsteroid;

();

+virtual collideWith(SpaceShip*)
+virtual collideWith(ApolloSpacecraft*)

SpaceShip *spaceShip = new ApolloSpacecraft;

asteroid->collideWith(spaceShip);
static dispatch

spaceShip->collideWith(asteroid);ExplodingAsteroid
+collideWith(SpaceShip*)

26-30

 dynamic dispatch

+collideWith(ApolloSpacecraft*)
(p p)

Double Dispatch (cont’d)p ()
SpaceShipp p

+virtual collideWith(Asteroid* a)
a->collideWith(this);

+collideWith(Asteroid* a)
a->collideWith(this);

ApolloSpacecraft

Asteroid
+ i t l llid With(S Shi *)

Asteroid *asteroid = new ExplodingAsteroid;

();

+virtual collideWith(SpaceShip*)
+virtual collideWith(ApolloSpacecraft*)

SpaceShip *spaceShip = new ApolloSpacecraft;

asteroid->collideWith(spaceShip);
static dispatch

spaceShip->collideWith(asteroid);ExplodingAsteroid
+collideWith(SpaceShip*)

26-30

delete asteroid;
delete spaceShip; dynamic dispatch

+collideWith(ApolloSpacecraft*)
(p p)

Double Dispatch (cont’d)p ()
 This is the basis of the Visitor patternSpaceShipp p

+virtual collideWith(Asteroid* a)
a->collideWith(this);

+collideWith(Asteroid* a)
a->collideWith(this);

ApolloSpacecraft

Asteroid
+ i t l llid With(S Shi *)

Asteroid *asteroid = new ExplodingAsteroid;

();

+virtual collideWith(SpaceShip*)
+virtual collideWith(ApolloSpacecraft*)

SpaceShip *spaceShip = new ApolloSpacecraft;

asteroid->collideWith(spaceShip);
static dispatch

spaceShip->collideWith(asteroid);ExplodingAsteroid
+collideWith(SpaceShip*)

26-30

delete asteroid;
delete spaceShip; dynamic dispatch

+collideWith(ApolloSpacecraft*)
(p p)

Visitor Pattern
 A way of separating an algorithm from an object structure on

which it operates such that it is possible to add new operations towhich it operates such that it is possible to add new operations to
existing object structures without modifying those structures and
enforcing the OCP.

26-31

Visitor Pattern
 A way of separating an algorithm from an object structure on

which it operates such that it is possible to add new operations towhich it operates such that it is possible to add new operations to
existing object structures without modifying those structures and
enforcing the OCP.

Client

26-31

Visitor Pattern
 A way of separating an algorithm from an object structure on

which it operates such that it is possible to add new operations towhich it operates such that it is possible to add new operations to
existing object structures without modifying those structures and
enforcing the OCP.

Client

+accept(Visitor *v)
Element

+accept(Visitor v)

El O C i T

ElementOne
+accept(Visitor *v)

ContainerTwo
+accept(Visitor *v)

26-31

Visitor Pattern
 A way of separating an algorithm from an object structure on

which it operates such that it is possible to add new operations towhich it operates such that it is possible to add new operations to
existing object structures without modifying those structures and
enforcing the OCP.

Visitor

Client
+visit(ElementOne *e)
+visit(ContainerTwo *e)

Visitor

VisitorOne+accept(Visitor *v)
Element

+visit(ElementOne *e)
+visit(ContainerTwo *e)

+accept(Visitor v)

El O C i T

ElementOne
+accept(Visitor *v)

ContainerTwo
+accept(Visitor *v)

26-31

Visitor Pattern
 A way of separating an algorithm from an object structure on

which it operates such that it is possible to add new operations towhich it operates such that it is possible to add new operations to
existing object structures without modifying those structures and
enforcing the OCP.

Visitor

Client
+visit(ElementOne *e)
+visit(ContainerTwo *e)

Visitor

VisitorOne+accept(Visitor *v)
Element

+visit(ElementOne *e)
+visit(ContainerTwo *e)

+accept(Visitor v)

El O C i T

i i (hi) > i it(thi)

ElementOne
+accept(Visitor *v)

ContainerTwo
+accept(Visitor *v)

26-31

 v->visit(this); v->visit(this);
foreach x in *this

x.accept(v);

Visitor Pattern
 A way of separating an algorithm from an object structure on

which it operates such that it is possible to add new operations towhich it operates such that it is possible to add new operations to
existing object structures without modifying those structures and
enforcing the OCP.

Visitor

Client
+visit(ElementOne *e)
+visit(ContainerTwo *e)

Visitor

VisitorOne+accept(Visitor *v)
Element

+visit(ElementOne *e)
+visit(ContainerTwo *e)

+accept(Visitor v)

El O C i T
Visitor *v=new VisitorOne;
Element *e=new ContainerTwo;

i i (hi) > i it(thi)

ElementOne
+accept(Visitor *v)

ContainerTwo
+accept(Visitor *v)

26-31

 v->visit(this); v->visit(this);
foreach x in *this

x.accept(v);

Visitor Pattern
 A way of separating an algorithm from an object structure on

which it operates such that it is possible to add new operations towhich it operates such that it is possible to add new operations to
existing object structures without modifying those structures and
enforcing the OCP.

Visitor

Client
+visit(ElementOne *e)
+visit(ContainerTwo *e)

Visitor

VisitorOne+accept(Visitor *v)
Element

+visit(ElementOne *e)
+visit(ContainerTwo *e)

+accept(Visitor v)

El O C i T
Visitor *v=new VisitorOne;
Element *e=new ContainerTwo;

i i (hi) > i it(thi)

ElementOne
+accept(Visitor *v)

ContainerTwo
+accept(Visitor *v)

26-31

e->accept(v);v->visit(this); v->visit(this);
foreach x in *this

x.accept(v);

Visitor Pattern
 A way of separating an algorithm from an object structure on

which it operates such that it is possible to add new operations towhich it operates such that it is possible to add new operations to
existing object structures without modifying those structures and
enforcing the OCP.

Visitor

Client
+visit(ElementOne *e)
+visit(ContainerTwo *e)

Visitor

VisitorOne+accept(Visitor *v)
Element VisitorTwo

+visit(ElementOne *e)
+visit(ContainerTwo *e)

+accept(Visitor v)

El O C i T

+visit(ElementOne *e)
+visit(ContainerTwo *e)

Visitor *v=new VisitorOne;
Element *e=new ContainerTwo;

i i (hi) > i it(thi)

ElementOne
+accept(Visitor *v)

ContainerTwo
+accept(Visitor *v)

26-31

e->accept(v);v->visit(this); v->visit(this);
foreach x in *this

x.accept(v);

Visitor Pattern
 A way of separating an algorithm from an object structure on

which it operates such that it is possible to add new operations towhich it operates such that it is possible to add new operations to
existing object structures without modifying those structures and
enforcing the OCP.

Visitor

Client
+visit(ElementOne *e)
+visit(ContainerTwo *e)

Visitor

VisitorOne+accept(Visitor *v)
Element VisitorTwo

+visit(ElementOne *e)
+visit(ContainerTwo *e)

+accept(Visitor v)

El O C i T

+visit(ElementOne *e)
+visit(ContainerTwo *e)

Visitor *v=new VisitorOne;
Element *e=new ContainerTwo;

i i (hi) > i it(thi)

ElementOne
+accept(Visitor *v)

ContainerTwo
+accept(Visitor *v)

26-31

e->accept(v);v->visit(this); v->visit(this);
foreach x in *this

x.accept(v);
delete v; delete e;

