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grad1display();

grad1

He has a stipend of –384584985 dollars.
His address is 324rekj8

Downcast is dangerous.  It is 
correct only when the object

i t d b i bj t
Person
m name

grad1
ex. person = grad2;

…
grad1 = (Graduate *) person; What happened:

pointed by person is an object
of class Graduate.

m_name
m_age

m_stipend
ffi

?
?

grad1display() calls Graduate::display(), which
accesses m_name, m_age, m_stipend, and m_office to

 What happened:

26-6

m_office ?
grad1=dynamic_cast<Graduate *> person; //grad1 will be 0

display them, but the latter two fields do not exist for
a Person object
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 Is there a way that can make the above code display all detail 
information of every derived class in a uniform way?



A Solution with Data Tagg
 Create an enumerated type for each base type:
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 Create an enumerated type for each base type:

enum ObjectType {undergrad, grad, professor};j yp { g g p }
 Add a tag of this type to the base class

class Person {
public:public:

Person();

~Person();
Person(char *name, int age, ObjectType typeTag);Person(char *name, int age                                     );

Undergraduate::Undergraduate(…):
Person(…,undergrad) 

{…}

void display() const;
private:

char *m name;

ObjectType getType();

{ }char m_name;
int m_age;

};
ObjectType m_typeTag;

Person::Person(char *name, int age, ObjectType typeTag) 
: m age(age), m typeTag(typeTag) {

 Make the necessary changes in the constructor
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_ g ( g ), _ yp g( yp g) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

}



A Solution with Data Tag (Cont’d)g ( )
Person *database[3], *temp;
database[0] = new Undergraduate("Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "Gates 199", "associate professor");
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database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "Gates 199", "associate professor");
for (int i=0; i<3; i++) { evil( ; ; ) {

temp = database[i];
switch (tempgetType()) {
case undergrad:

Using code to select codeDowncast is the 
“goto” for OOP!!

case undergrad:
((Undergraduate *) temp)display(); 
break;

case grad:
// RTTI
if (dynamic cast<Undergraduate*>(temp))

another way to implement w/o tags

case grad:
((Graduate *) temp)display();
break;

f

if (dynamic_cast<Undergraduate >(temp))
((Undergraduate*)temp)->display();

else if (dynamic_cast<Graduate*>(temp))
((Graduate*)temp)->display();case professor:

((Faculty *) temp)display();
break;

((Graduate )temp) display();
else if (dynamic_cast<Faculty*>(temp))

((Faculty*)temp)->display();
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}
} This is a segment of code not satisfying open-closed principle. 

Usually, this is avoided with the “strategy” pattern.



Solution with Virtual Function
 Declare the function as virtual in the 

base classbase class
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 Declare the function as virtual in the 
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};
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Person(char *name int age);
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g
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Solution with Virtual Function
 Declare the function as virtual in the 

base class

Outputs
Bob is 18 years old.
H i d d tbase class

class Person {
public:

Person();
Person(char *name int age);

He is an undergraduate.
Bob is 18 years old.
He is a graduate student.Person(char *name, int age);

~Person();
virtual void display() const;

private:
h * Ron is 34 years old

g
He has a stipend of 6000 dollars.
His address is INS501.

char *m_name;
int m_age;

};

Ron is 34 years old.
His address is INS512.
His rank is associate professor.

 Invoke indirectly through base class pointer or reference
Person *database[3];
database[0] = new Undergraduate("Bob", 18);

Will invoke Undergraduate::display()

[ ] g ( , );
database[1] = new Graduate("Michael", 25, 6000, "INS501");
database[2] = new Faculty("Ron", 34, "INS512", "associate professor");
for (int i=0; i<3; i++) Will invoke Undergraduate::display()Will invoke Undergraduate::display()

26-10

Will invoke Undergraduate::display()

or equivalently (*database[i]).display();

database[i]display(); Will invoke Undergraduate::display(),
Graduate::display()
Will invoke Undergraduate::display(),
Graduate::display(), and Faculty::display()
in turn
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determined by the object the pointer 
refers to during run-time.
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Virtual Function
 The keyword virtual is not required in a derived class.

class Undergraduate: public Person {
blipublic:
Undergraduate(char *name, int age);
virtual void display() const;    // optional here if display() is already a virtual

} // f ti i P l};                                                   //  function in Person class
Some C++ programmers consider it a good style to include the keyword for clarity

 Syntax The keyword virtual must not be used in

error C2723: 'func1' : 'virtual' storage class specifier illegal on function definition

 Syntax The keyword virtual must not be used in 
the function definition, only in the declaration

error C2723: 'func1' : 'virtual' storage-class specifier illegal on function definition

Efficiencye g Java Historical backgrounds Efficiency
consideration

e.g. Javag
 Most object-oriented languages have only run-time binding.
 C++, because of its origin in C, has compile-time binding by default. 
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 Static member functions and constructors cannot be declared 
virtual.   Destructors are always declared as virtual functions.



Function Pointer
 Increasing the flexibility of your program

26-13



Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you 
can pass a function pointer to a function)  ex. qsort(), find(), sort()

26-13



Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you 
can pass a function pointer to a function)  ex. qsort(), find(), sort()

 Higher order programming: Higher order programming:

26-13



Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you 
can pass a function pointer to a function)  ex. qsort(), find(), sort()

 Higher order programming: Higher order programming: functions are objects that can be Higher order programming: Higher order programming: functions are objects that can be  
input/output of some algorithms and processed extensively.

26-13



Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you 
can pass a function pointer to a function)  ex. qsort(), find(), sort()

 Higher order programming: Higher order programming: functions are objects that can be

 Syntax:

 Higher order programming: Higher order programming: functions are objects that can be  
input/output of some algorithms and processed extensively.

 Syntax:

26-13



Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you 
can pass a function pointer to a function)  ex. qsort(), find(), sort()

 Higher order programming: Higher order programming: functions are objects that can be

 Syntax:

 Higher order programming: Higher order programming: functions are objects that can be  
input/output of some algorithms and processed extensively.

return type (*function pointer variable)(parameters); Syntax: return_type ( function_pointer_variable)(parameters);

26-13



Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you 
can pass a function pointer to a function)  ex. qsort(), find(), sort()

 Higher order programming: Higher order programming: functions are objects that can be

 Syntax:

 Higher order programming: Higher order programming: functions are objects that can be  
input/output of some algorithms and processed extensively.

return type (*function pointer variable)(parameters); Syntax:
 Example:

return_type ( function_pointer_variable)(parameters);

26-13



Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you 
can pass a function pointer to a function)  ex. qsort(), find(), sort()

 Higher order programming: Higher order programming: functions are objects that can be

 Syntax:

 Higher order programming: Higher order programming: functions are objects that can be  
input/output of some algorithms and processed extensively.

return type (*function pointer variable)(parameters); Syntax:
 Example:

int func1(int x) {

return_type ( function_pointer_variable)(parameters);

int func1(int x) {
…
return 0;

}}

26-13



Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you 
can pass a function pointer to a function)  ex. qsort(), find(), sort()

 Higher order programming: Higher order programming: functions are objects that can be

 Syntax:

 Higher order programming: Higher order programming: functions are objects that can be  
input/output of some algorithms and processed extensively.

return type (*function pointer variable)(parameters);

int func2(int x) {

 Syntax:
 Example:

int func1(int x) {

return_type ( function_pointer_variable)(parameters);

int func2(int x) {
…
return 0;

}

int func1(int x) {
…
return 0;

} }}

26-13



Function Pointer
 Increasing the flexibility of your program

making the algorithm / mechanism an adjustable parameter (youmaking the algorithm / mechanism an adjustable parameter (you 
can pass a function pointer to a function)  ex. qsort(), find(), sort()

 Higher order programming: Higher order programming: functions are objects that can be

 Syntax:

 Higher order programming: Higher order programming: functions are objects that can be  
input/output of some algorithms and processed extensively.

return type (*function pointer variable)(parameters);

int func2(int x) {

 Syntax:
 Example:

int func1(int x) {

return_type ( function_pointer_variable)(parameters);

int func2(int x) {
…
return 0;

}

int func1(int x) {
…
return 0;

} }

int (*fp)(int);

}

26-13

fp = func1;
(*fp)(123); // calling function func1(), i.e. func1(123)
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Function Pointer (cont’d)( )
 Increasing the flexibility of the program
 Example continued Example continued

func1(), func2(), and fp are defined as before

void service(int (*proc)(int), int data) {
…
(*proc)(data);
…

}
…
fp = func2;
…
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class Base {
public:
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void funcC() { cout << "Base::funcC() #3\n"; }
virtual void funcD() { cout << "Base::funcD() #4\n"; }
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virtual void funcE(int, int) { cout << "Base::funcE(int,int) #6\n"; }

};
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p y p
Superior abstraction of object usage (code reuse), 
old codes call new codes (usage prediction)
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Virtual function does not always use dynamic binding.
This is a C++ specific feature.
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 Note: This syntax makes every destructor of every derived class virtual even 
though the names do not match.  Visual Studio automatically does this.



Invoking a Virtual function in Ctor/Dtorg
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incompletely set up by the constructor especially for a derived 
object.  Also, the virtual table may be partially or completely 
destroyed by the destructor in the process of destructing an object 
instanceinstance.

 It is not reasonable to expect runtime binding to work properly 
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