
Advanced InheritanceAdvanced Inheritance

C++ Obj t O i t d P iC++ Object Oriented Programming
Pei-yih Ting
NTOU CSNTOU CS

27-1

Contents
 Abstract Base Class (ABC)()

 What can you do with an ABC?

 Pure virtual function Pure virtual function











27-2

Contents
 Abstract Base Class (ABC)()

 What can you do with an ABC?

 Pure virtual function Pure virtual function

 Multiple inheritance









27-3

Contents
 Abstract Base Class (ABC)()

 What can you do with an ABC?

 Pure virtual function Pure virtual function

 Multiple inheritance

 Virtual Base Class







27-4

Contents
 Abstract Base Class (ABC)()

 What can you do with an ABC?

 Pure virtual function Pure virtual function

 Multiple inheritance

 Virtual Base Class

 Private inheritance

 Restoring the accessibility of privately inherited interface



27-5

Contents
 Abstract Base Class (ABC)()

 What can you do with an ABC?

 Pure virtual function Pure virtual function

 Multiple inheritance

 Virtual Base Class

 Private inheritance

 Restoring the accessibility of privately inherited interface

 Inherit from a template class Inherit from a template class

27-6

Abstract Class
 In the University database program, Person class exists only to

serve as a common base class

27-7

Abstract Class
 In the University database program, Person class exists only to

serve as a common base class
 We can strengthen the abstraction by allowing only objects of

derived classes of Person to be created (instantiated). Ex.

27-8

Abstract Class
 In the University database program, Person class exists only to

serve as a common base class
 We can strengthen the abstraction by allowing only objects of

derived classes of Person to be created (instantiated). Ex.
class Person {class Person {
public:

Person();
Person(char *name, int age);(, g);
virtual ~Person();
virtual void display() const = 0;

private:
char *m name;char *m_name;
int *m_age;

};

27-9

Abstract Class
 In the University database program, Person class exists only to

serve as a common base class
 We can strengthen the abstraction by allowing only objects of

derived classes of Person to be created (instantiated). Ex.
class Person {

At least one member function
should be declared in this way

class Person {
public:

Person();
Person(char *name, int age); should be declared in this way

for Person to be an abstract class
(, g);

virtual ~Person();
virtual void display() const = 0;

private:
char *m name;char *m_name;
int *m_age;

};

27-10

Abstract Class
 In the University database program, Person class exists only to

serve as a common base class
 We can strengthen the abstraction by allowing only objects of

derived classes of Person to be created (instantiated). Ex.
class Person {

At least one member function
should be declared in this way

class Person {
public:

Person();
Person(char *name, int age); should be declared in this way

for Person to be an abstract class
(, g);

virtual ~Person();
virtual void display() const = 0;

private:
char *m name;

 Person is now an example of an abstract class Any attempt to define

char *m_name;
int *m_age;

};
 Person is now an example of an abstract class. Any attempt to define

a Person object will fail, i.e.
Person teacher; // compilation error

27-11

Abstract Class
 In the University database program, Person class exists only to

serve as a common base class
 We can strengthen the abstraction by allowing only objects of

derived classes of Person to be created (instantiated). Ex.
class Person {

At least one member function
should be declared in this way

class Person {
public:

Person();
Person(char *name, int age); should be declared in this way

for Person to be an abstract class
(, g);

virtual ~Person();
virtual void display() const = 0;

private:
char *m name;

 Person is now an example of an abstract class Any attempt to define

char *m_name;
int *m_age;

};

C2259 'P ' t i t ti t b t t l d t f ll i b

 Person is now an example of an abstract class. Any attempt to define
a Person object will fail, i.e.

Person teacher; // compilation error

27-12

error C2259: 'Person' : cannot instantiate abstract class due to following members:
warning C4259: 'void __thiscall Person::display(void) const' :pure virtual function

was not defined

How to use an Abstract Class?
 You can define a pointer to the abstract class object as long as you

do not try to allocate an actual object (i e instantiation)do not try to allocate an actual object (i.e. instantiation)

27-13

How to use an Abstract Class?
 You can define a pointer to the abstract class object as long as you

do not try to allocate an actual object (i e instantiation)do not try to allocate an actual object (i.e. instantiation)
Person *ptrTeacher; // polymorphic pointer

27-14

How to use an Abstract Class?
 You can define a pointer to the abstract class object as long as you

do not try to allocate an actual object (i e instantiation)do not try to allocate an actual object (i.e. instantiation)
Person *ptrTeacher; // polymorphic pointer

 Each of the derived class that need to be instantiated must Each of the derived class that need to be instantiated must
implement its version of the display() virtual function. Otherwise,
the derived class is still an abstract class and can not be instantiated.

27-15

How to use an Abstract Class?
 You can define a pointer to the abstract class object as long as you

do not try to allocate an actual object (i e instantiation)do not try to allocate an actual object (i.e. instantiation)
Person *ptrTeacher; // polymorphic pointer

 Each of the derived class that need to be instantiated must Each of the derived class that need to be instantiated must
implement its version of the display() virtual function. Otherwise,
the derived class is still an abstract class and can not be instantiated.

 If Undergraduate, Graduate, and Faculty all implement the display(),
function

27-16

How to use an Abstract Class?
 You can define a pointer to the abstract class object as long as you

do not try to allocate an actual object (i e instantiation)do not try to allocate an actual object (i.e. instantiation)
Person *ptrTeacher; // polymorphic pointer

 Each of the derived class that need to be instantiated must Each of the derived class that need to be instantiated must
implement its version of the display() virtual function. Otherwise,
the derived class is still an abstract class and can not be instantiated.

 If Undergraduate, Graduate, and Faculty all implement the display(),
function, then you can do this

 If Undergraduate, Graduate, and Faculty all implement the display(),
function, y

Person *database[3]; // heterogeneous container
database[0] = new Undergraduate("Mary", 18);
d t b [1] G d t ("A l " 25 6000 "F i i 2250")database[1] = new Graduate("Angela", 25, 6000, "Fairview 2250");
database[2] = new Faculty("Sue", 34, "Fairview 2248", "Professor");
for (int i=0; i<3; i++)

27-17

database[i]->display();

How to use an Abstract Class?
 You can define a pointer to the abstract class object as long as you

do not try to allocate an actual object (i e instantiation)do not try to allocate an actual object (i.e. instantiation)
Person *ptrTeacher; // polymorphic pointer

 Each of the derived class that need to be instantiated must Each of the derived class that need to be instantiated must
implement its version of the display() virtual function. Otherwise,
the derived class is still an abstract class and can not be instantiated.

 If Undergraduate, Graduate, and Faculty all implement the display(),
function, then you can do this

 If Undergraduate, Graduate, and Faculty all implement the display(),
function, y

Person *database[3]; // heterogeneous container
database[0] = new Undergraduate("Mary", 18);
d t b [1] G d t ("A l " 25 6000 "F i i 2250")database[1] = new Graduate("Angela", 25, 6000, "Fairview 2250");
database[2] = new Faculty("Sue", 34, "Fairview 2248", "Professor");
for (int i=0; i<3; i++)

27-18

database[i]->display();

 Abstract classes are sometimes called partial classes

Pure Virtual Function
 The function that makes the class abstract is called a pure virtual

function (also called a deferred function)function (also called a deferred function)

27-19

Pure Virtual Function
 The function that makes the class abstract is called a pure virtual

function (also called a deferred function)function (also called a deferred function)

 The base class can still define a version for this pure virtual function
t b t ti ll h d b ll d i d lto be automatically shared by all derived classes.

27-20

Pure Virtual Function
 The function that makes the class abstract is called a pure virtual

function (also called a deferred function)function (also called a deferred function)

 The base class can still define a version for this pure virtual function
t b t ti ll h d b ll d i d l

 The base class can still define a version for this pure virtual function
t b t ti ll h d b ll d i d l Si hto be automatically shared by all derived classes. to be automatically shared by all derived classes. Since each
derived class has to define its own implementation for this pure
virtual function the function defined will be overridden in allvirtual function, the function defined will be overridden in all
derived classes. However, this function can be called explicitly as
follows:

27-21

Pure Virtual Function
 The function that makes the class abstract is called a pure virtual

function (also called a deferred function)function (also called a deferred function)

 The base class can still define a version for this pure virtual function
t b t ti ll h d b ll d i d l

 The base class can still define a version for this pure virtual function
t b t ti ll h d b ll d i d l Si hto be automatically shared by all derived classes. to be automatically shared by all derived classes. Since each
derived class has to define its own implementation for this pure
virtual function the function defined will be overridden in allvirtual function, the function defined will be overridden in all
derived classes. However, this function can be called explicitly as
follows:

void Person::display() const {
cout << getName() << " is " << getAge() << " years old.\n";

}}
void Faculty::display() const {

Person::display();
cout << " Her address is " << m_office.getAddress() << ".\n";

t << " H k i " << k << " \ \ "

27-22

cout << " Her rank is " << m_rank << ".\n\n";
}

Abstract Base Class (ABC)()
 ABCs are base classes that contain some pure virtual functions that

may not be implementedmay not be implemented


27-23

Abstract Base Class (ABC)()
 ABCs are base classes that contain some pure virtual functions that

may not be implementedmay not be implemented
 Ex. In the class hierarchy below, classes A and B are all abstract

because function Z is not implemented till classes C and Dbecause function Z is not implemented till classes C and D

27-24

Abstract Base Class (ABC)()
 ABCs are base classes that contain some pure virtual functions that

may not be implementedmay not be implemented
 Ex. In the class hierarchy below, classes A and B are all abstract

because function Z is not implemented till classes C and Dbecause function Z is not implemented till classes C and D

class A
deferred function Z()=0deferred function Z()=0

27-25

Abstract Base Class (ABC)()
 ABCs are base classes that contain some pure virtual functions that

may not be implementedmay not be implemented
 Ex. In the class hierarchy below, classes A and B are all abstract

because function Z is not implemented till classes C and Dbecause function Z is not implemented till classes C and D

class A
deferred function Z()=0deferred function Z()=0

class B
other functions

27-26

Abstract Base Class (ABC)()
 ABCs are base classes that contain some pure virtual functions that

may not be implementedmay not be implemented
 Ex. In the class hierarchy below, classes A and B are all abstract

because function Z is not implemented till classes C and Dbecause function Z is not implemented till classes C and D

class A
deferred function Z()=0deferred function Z()=0

class B
other functions

class D

27-27

Z() implemented

Abstract Base Class (ABC)()
 ABCs are base classes that contain some pure virtual functions that

may not be implementedmay not be implemented
 Ex. In the class hierarchy below, classes A and B are all abstract

because function Z is not implemented till classes C and Dbecause function Z is not implemented till classes C and D

class A
deferred function Z()=0deferred function Z()=0

class C
Z() implemented

class B
other functions

class D

27-28

Z() implemented

Abstract Base Class (ABC)()
 ABCs are base classes that contain some pure virtual functions that

may not be implementedmay not be implemented
 Ex. In the class hierarchy below, classes A and B are all abstract

because function Z is not implemented till classes C and Dbecause function Z is not implemented till classes C and D

class A
deferred function Z()=0 class A

or
deferred function Z()=0

class C
Z() implemented

class B
other functions

class D

27-29

Z() implemented

Why do you need Abstract Classes?y y
 There could be many roles a particular type of object is playing

depending on which environment the object is independing on which environment the object is in.










27-30



Why do you need Abstract Classes?y y
 There could be many roles a particular type of object is playing

depending on which environment the object is independing on which environment the object is in.
 A person is an employee in his office, a father in his family, a pitcher in a

baseball game, etc








27-31



Why do you need Abstract Classes?y y
 There could be many roles a particular type of object is playing

depending on which environment the object is independing on which environment the object is in.
 A person is an employee in his office, a father in his family, a pitcher in a

baseball game, etc
 A stream could be an output unit for one program and an input unit for another.






27-32



Why do you need Abstract Classes?y y
 There could be many roles a particular type of object is playing

depending on which environment the object is independing on which environment the object is in.
 A person is an employee in his office, a father in his family, a pitcher in a

baseball game, etc
 A stream could be an output unit for one program and an input unit for another.
 A printer could be an output device for a program and a resource to be handled

by the operating system


by the operating system



27-33



Why do you need Abstract Classes?y y
 There could be many roles a particular type of object is playing

depending on which environment the object is independing on which environment the object is in.
 A person is an employee in his office, a father in his family, a pitcher in a

baseball game, etc
 A stream could be an output unit for one program and an input unit for another.
 A printer could be an output device for a program and a resource to be handled

by the operating system
 With abstract classes, you can describe multiple interfaces when

viewing/using the object in different environments.

by the operating system



27-34



Why do you need Abstract Classes?y y
 There could be many roles a particular type of object is playing

depending on which environment the object is independing on which environment the object is in.
 A person is an employee in his office, a father in his family, a pitcher in a

baseball game, etc
 A stream could be an output unit for one program and an input unit for another.
 A printer could be an output device for a program and a resource to be handled

by the operating system
 With abstract classes, you can describe multiple interfaces when

viewing/using the object in different environments.

by the operating system

 An interface specifies a particular role (we specify a role with a set of
operations) for an object that provides some particular functions to
other objects. An ABC is frequently an adjective, Ex. Printable,
Persistent, … only specify some properties.

27-35



Why do you need Abstract Classes?y y
 There could be many roles a particular type of object is playing

depending on which environment the object is independing on which environment the object is in.
 A person is an employee in his office, a father in his family, a pitcher in a

baseball game, etc
 A stream could be an output unit for one program and an input unit for another.
 A printer could be an output device for a program and a resource to be handled

by the operating system
 With abstract classes, you can describe multiple interfaces when

viewing/using the object in different environments.

by the operating system

 An interface specifies a particular role (we specify a role with a set of
operations) for an object that provides some particular functions to
other objects. An ABC is frequently an adjective, Ex. Printable,
Persistent, … only specify some properties.

27-36

 A class can have many unrelated abstract specifications. We will
discuss this language feature in C++ as multiple inheritance.

Why do you need Abstract Classes?y y
 Two examples (types) of usage:

need not be instantiated
Student

need not be instantiated

Undergraduate Graduate ForeignStudent

27-37

Why do you need Abstract Classes?y y
 Two examples (types) of usage:

need not be instantiated
Student

need not be instantiated

Undergraduate Graduate ForeignStudent

Runnable Printable Observable

WorkThread
only describe some
partial property

27-38

p p p y

Multiple Inheritancep
 Sometimes an object has IS-A relationships to many classes. In

such cases multiple inheritance may be appropriatesuch cases, multiple inheritance may be appropriate.

27-39

Multiple Inheritancep
 Sometimes an object has IS-A relationships to many classes. In

such cases multiple inheritance may be appropriatesuch cases, multiple inheritance may be appropriate.

 Consider the following two base classes

27-40

Multiple Inheritancep
 Sometimes an object has IS-A relationships to many classes. In

such cases multiple inheritance may be appropriatesuch cases, multiple inheritance may be appropriate.

 Consider the following two base classes

class Predator
{{
public:

Predator(char *prey, char *habitat);
~Predator();

t h * tP () tconst char *getPrey() const;
const char *getHabitat() const;

private:
char *m prey;_p y;
char *m_habitat;

};

27-41

Multiple Inheritancep
 Sometimes an object has IS-A relationships to many classes. In

such cases multiple inheritance may be appropriatesuch cases, multiple inheritance may be appropriate.

 Consider the following two base classes

class Predator
{

class Pet
{

bli

{
public:

Predator(char *prey, char *habitat);
~Predator();

t h * tP () t public:
Pet(char *name, char *habitat);
~Pet();
const char *getName() const;

const char *getPrey() const;
const char *getHabitat() const;

private:
char *m prey; const char getName() const;

const char *getHabitat() const;
private:

char *m_name;
h * h bit t

_p y;
char *m_habitat;

};

27-42

char *m_habitat;
};

Multiple Inheritance (cont’d)p ()
 Now we want to define a Cat class

27-43

Multiple Inheritance (cont’d)p ()
 Now we want to define a Cat class

class Cat: public Predator, public Petclass Cat: public Predator, public Pet
{
public:

Cat(char *name, char *prey, char *habitat);(, p y,);
void reduceLives();
int getLives() const;

private:p
int m_lives;

};

27-44

Multiple Inheritance (cont’d)p ()
 Now we want to define a Cat class

class Cat: public Predator, public Petclass Cat: public Predator, public Pet
{
public:

Cat(char *name, char *prey, char *habitat);

Predator Pet

(, p y,);
void reduceLives();
int getLives() const;

private:

 Cl i h it hi h

p
int m_lives;

};

Cat Class inheritance hierarchy

27-45

Multiple Inheritance (cont’d)p ()
 Now we want to define a Cat class

class Cat: public Predator, public Petclass Cat: public Predator, public Pet
{
public:

Cat(char *name, char *prey, char *habitat);

Predator Pet

(, p y,);
void reduceLives();
int getLives() const;

private:

 Cl i h it hi h

p
int m_lives;

};

Cat Class inheritance hierarchy

 The Cat constructor
Cat::Cat(char *name, char *prey, char *habitat)

: Predator(prey, habitat), Pet(name, habitat), m_lives(9)
{

27-46

}

Multiple Inheritance (cont’d)p ()
 Now we want to define a Cat class

class Cat: public Predator, public Petclass Cat: public Predator, public Pet
{
public:

Cat(char *name, char *prey, char *habitat);

Predator Pet

(, p y,);
void reduceLives();
int getLives() const;

private:

 Cl i h it hi h

p
int m_lives;

};

Cat Class inheritance hierarchy

 The Cat constructor
Cat::Cat(char *name, char *prey, char *habitat)

: Predator(prey, habitat), Pet(name, habitat), m_lives(9)
{

27-47 Note that getHabitat() and the m_habitat will be inherited twice

}

Multiple Inheritance (cont’d)p ()
 Using the Cat class











27-48

Multiple Inheritance (cont’d)p ()
 Using the Cat class

Cat cat("Binky" "mice" "indoors");Cat cat(Binky , mice , indoors);








27-49

Multiple Inheritance (cont’d)p ()
 Using the Cat class

Cat cat("Binky" "mice" "indoors");Cat cat(Binky , mice , indoors);
cat.reduceLives(); // due to an accident
cout << cat.getName() << " is a cat who eats " << cat.getPrey() << " and lives "

<< cat.Pet::getHabitat() << ".\n" << cat.getName() << " currently has "
<< cat.getLives() << " liv;"n\.se

27-50

Multiple Inheritance (cont’d)p ()
 Using the Cat class

Cat cat("Binky" "mice" "indoors");Cat cat(Binky , mice , indoors);
cat.reduceLives(); // due to an accident
cout << cat.getName() << " is a cat who eats " << cat.getPrey() << " and lives "

<< cat.Pet::getHabitat() << ".\n" << cat.getName() << " currently has "
<< cat.getLives() << " liv;"n\.se

Outputp
Binky is a cat who eats mice and lives indoors.
Binky currently has 8 lives

27-51

Multiple Inheritance (cont’d)p ()
 Using the Cat class

Cat cat("Binky" "mice" "indoors");Cat cat(Binky , mice , indoors);
cat.reduceLives(); // due to an accident
cout << cat.getName() << " is a cat who eats " << cat.getPrey() << " and lives "

<< cat.Pet::getHabitat() << ".\n" << cat.getName() << " currently has "
<< cat.getLives() << " liv;"n\.se

Outputp
Binky is a cat who eats mice and lives indoors.
Binky currently has 8 lives

 What would happen if we wrote this?
cout << cat.getHabitat();

27-52

Multiple Inheritance (cont’d)p ()
 Using the Cat class

Cat cat("Binky" "mice" "indoors");Cat cat(Binky , mice , indoors);
cat.reduceLives(); // due to an accident
cout << cat.getName() << " is a cat who eats " << cat.getPrey() << " and lives "

<< cat.Pet::getHabitat() << ".\n" << cat.getName() << " currently has "
<< cat.getLives() << " liv;"n\.se

Outputp
Binky is a cat who eats mice and lives indoors.
Binky currently has 8 lives

error C2385: 'Cat::getHabitat' is ambiguous

 What would happen if we wrote this?
cout << cat.getHabitat();

g g

27-53

Multiple Inheritance (cont’d)p ()
 Using the Cat class

Cat cat("Binky" "mice" "indoors");Cat cat(Binky , mice , indoors);
cat.reduceLives(); // due to an accident
cout << cat.getName() << " is a cat who eats " << cat.getPrey() << " and lives "

<< cat.Pet::getHabitat() << ".\n" << cat.getName() << " currently has "
<< cat.getLives() << " liv;"n\.se

Outputp
Binky is a cat who eats mice and lives indoors.
Binky currently has 8 lives

error C2385: 'Cat::getHabitat' is ambiguous

 What would happen if we wrote this?
cout << cat.getHabitat();

g g

 It is necessary to disambiguate which getHabitat() function we want.
hi i h d bi () bi () i

27-54

In this case, either Predator::getHabitat() or Pet::getHabitat() is a
possible candidate.

Improving Multiple Inheritancep g p
 The redundancy in the base classes is a clue that perhaps we haven’t

decomposed the inheritance properlydecomposed the inheritance properly

27-55

Improving Multiple Inheritancep g p
 The redundancy in the base classes is a clue that perhaps we haven’t

decomposed the inheritance properlydecomposed the inheritance properly

 Here is one solution:

27-56

Improving Multiple Inheritancep g p
 The redundancy in the base classes is a clue that perhaps we haven’t

decomposed the inheritance properlydecomposed the inheritance properly

 Here is one solution:

Cat

27-57

Improving Multiple Inheritancep g p
 The redundancy in the base classes is a clue that perhaps we haven’t

decomposed the inheritance properlydecomposed the inheritance properly

 Here is one solution:

Predator
getPrey()getPrey()

Cat

27-58

Improving Multiple Inheritancep g p
 The redundancy in the base classes is a clue that perhaps we haven’t

decomposed the inheritance properlydecomposed the inheritance properly

 Here is one solution:

Pet
getName()

Predator
getPrey() getName()getPrey()

Cat

27-59

Improving Multiple Inheritancep g p
 The redundancy in the base classes is a clue that perhaps we haven’t

decomposed the inheritance properlydecomposed the inheritance properly

Animal
getHabitat()

 Here is one solution:
getHabitat()

Pet
getName()

Predator
getPrey() getName()getPrey()

Cat

27-60

Improving Multiple Inheritancep g p
 The redundancy in the base classes is a clue that perhaps we haven’t

decomposed the inheritance properlydecomposed the inheritance properly

Animal
getHabitat()

 Here is one solution:
getHabitat()

Pet
getName()

Predator
getPrey() getName()getPrey()

Cat

27-61

Improving Multiple Inheritancep g p
 The redundancy in the base classes is a clue that perhaps we haven’t

decomposed the inheritance properlydecomposed the inheritance properly

Animal
getHabitat()

 Here is one solution:
getHabitat()

Pet
getName()

Predator
getPrey() The base class declaration getName()getPrey() The base class declaration

class Animal {
public:

Animal(char *habitat);

Cat

Animal(char habitat);
virtual ~Animal();
const char *getHabitat() const;

private:
h * h bit t

27-62

char *m_habitat;
};

Improving Multiple Inheritancep g p
 The redundancy in the base classes is a clue that perhaps we haven’t

decomposed the inheritance properlydecomposed the inheritance properly

Animal
getHabitat()

 Here is one solution:
getHabitat()

Pet
getName()

Predator
getPrey() The base class declaration getName()getPrey() The base class declaration

class Animal {
public:

Animal(char *habitat);

Cat

Animal(char habitat);
virtual ~Animal();
const char *getHabitat() const;

private:
h * h bit t

27-63
the ‘dreaded diamond’

char *m_habitat;
};

Virtual Base Class
 Cat inherits getHabitat() through

Predator but also through PetPredator but also through Pet





27-64



Virtual Base Class
 Cat inherits getHabitat() through

Predator but also through Pet
Animal

Predator but also through Pet

Predator PetPredator Pet

Cat





27-65



Virtual Base Class
 Cat inherits getHabitat() through

Predator but also through Pet
Animal

Predator but also through Pet

Predator Pet Cat still has two getHabitat()’s Predator Pet Cat still has two getHabitat() s

Cat





27-66



Virtual Base Class
 Cat inherits getHabitat() through

Predator but also through Pet
Animal

Predator but also through Pet

Predator Pet Cat still has two getHabitat()’s Predator Pet
cout << cat.getHabitat();

 Cat still has two getHabitat() s

Cat





27-67



Virtual Base Class
 Cat inherits getHabitat() through

Predator but also through Pet
Animal

Predator but also through Pet

Predator Pet Cat still has two getHabitat()’s Predator Pet

error C2385: 'Cat::getHabitat' is ambiguous

cout << cat.getHabitat();

 Cat still has two getHabitat() s

Cat
error C2385: 'Cat::getHabitat' is ambiguous





27-68



Virtual Base Class
 Cat inherits getHabitat() through

Predator but also through Pet
Animal

Predator but also through Pet

Predator Pet Cat still has two getHabitat()’s Predator Pet

error C2385: 'Cat::getHabitat' is ambiguous

cout << cat.getHabitat();

 Cat still has two getHabitat() s

Cat
error C2385: 'Cat::getHabitat' is ambiguous

 Still need to disambiguate these two versionsg
cout << cat.Predator::getHabitat() << "\n";
cout << cat.Pet::getHabitat() << "\n";





27-69



Virtual Base Class
 Cat inherits getHabitat() through

Predator but also through Pet
Animal

Predator but also through Pet

Predator Pet Cat still has two getHabitat()’s Predator Pet

error C2385: 'Cat::getHabitat' is ambiguous

cout << cat.getHabitat();

 Cat still has two getHabitat() s

Cat
error C2385: 'Cat::getHabitat' is ambiguous

 Still need to disambiguate these two versionsg
cout << cat.Predator::getHabitat() << "\n";
cout << cat.Pet::getHabitat() << "\n";

 A better solution is to create a virtual base class.


27-70



Virtual Base Class
 Cat inherits getHabitat() through

Predator but also through Pet
Animal

Predator but also through Pet

Predator Pet Cat still has two getHabitat()’s Predator Pet

error C2385: 'Cat::getHabitat' is ambiguous

cout << cat.getHabitat();

 Cat still has two getHabitat() s

Cat
error C2385: 'Cat::getHabitat' is ambiguous

 Still need to disambiguate these two versionsg
cout << cat.Predator::getHabitat() << "\n";
cout << cat.Pet::getHabitat() << "\n";

 A better solution is to create a virtual base class.
 A virtual base class is included only once in all derived classes.

27-71



Virtual Base Class
 Cat inherits getHabitat() through

Predator but also through Pet
Animal

Predator but also through Pet

Predator Pet Cat still has two getHabitat()’s Predator Pet

error C2385: 'Cat::getHabitat' is ambiguous

cout << cat.getHabitat();

 Cat still has two getHabitat() s

Cat
error C2385: 'Cat::getHabitat' is ambiguous

 Still need to disambiguate these two versionsg
cout << cat.Predator::getHabitat() << "\n";
cout << cat.Pet::getHabitat() << "\n";

 A better solution is to create a virtual base class.
 A virtual base class is included only once in all derived classes.

27-72

 In the case of Cat, all paths from Animal to Cat must be
marked as virtual, but only once.

Syntax of Virtual Base Classy
 Animal class is declared as before, but Predator and Pet must be

marked virtual

27-73

Syntax of Virtual Base Classy
 Animal class is declared as before, but Predator and Pet must be

marked virtual class Predator: p blic virtual Animal {class Predator: public virtual Animal {
…

};
class Pet: public virtual Animal {class Pet: public virtual Animal {

…
};

27-74

Syntax of Virtual Base Classy
 Animal class is declared as before, but Predator and Pet must be

marked virtual class Predator: p blic virtual Animal {class Predator: public virtual Animal {
…

};
class Pet: public virtual Animal {

 Cat remains almost the same

class Pet: public virtual Animal {
…

};

 Cat remains almost the same

27-75

Syntax of Virtual Base Classy
 Animal class is declared as before, but Predator and Pet must be

marked virtual class Predator: p blic virtual Animal {class Predator: public virtual Animal {
…

};
class Pet: public virtual Animal {

 Cat remains almost the same

class Pet: public virtual Animal {
…

};

 Cat remains almost the same

 One critical difference: a virtual base class must be initialized by its
most derived class (Cat in this case)most derived class (Cat in this case)

27-76

Syntax of Virtual Base Classy
 Animal class is declared as before, but Predator and Pet must be

marked virtual class Predator: p blic virtual Animal {class Predator: public virtual Animal {
…

};
class Pet: public virtual Animal {

 Cat remains almost the same

class Pet: public virtual Animal {
…

};

 Cat remains almost the same

 One critical difference: a virtual base class must be initialized by its
most derived class (Cat in this case)most derived class (Cat in this case)

Cat::Cat(char *name, char *prey, char *habitat)
: Animal(habitat), Predator(prey, habitat), Pet(name, habitat), m_lives(9) {

}}
Predator::Predator(char *prey, char *habitat) : Animal(habitat) {

m_prey = new char[strlen(prey)+1];
}

27-77

}

Syntax of Virtual Base Classy
 Animal class is declared as before, but Predator and Pet must be

marked virtual class Predator: p blic virtual Animal {class Predator: public virtual Animal {
…

};
class Pet: public virtual Animal {

If not supplied, call to
default ctor will be added Cat remains almost the same

class Pet: public virtual Animal {
…

};
default ctor will be added Cat remains almost the same

 One critical difference: a virtual base class must be initialized by its
most derived class (Cat in this case)most derived class (Cat in this case)

Cat::Cat(char *name, char *prey, char *habitat)
: Animal(habitat), Predator(prey, habitat), Pet(name, habitat), m_lives(9) {

}}
Predator::Predator(char *prey, char *habitat) : Animal(habitat) {

m_prey = new char[strlen(prey)+1];
}

27-78

}

Syntax of Virtual Base Classy
 Animal class is declared as before, but Predator and Pet must be

marked virtual class Predator: p blic virtual Animal {class Predator: public virtual Animal {
…

};
class Pet: public virtual Animal {

If not supplied, call to
default ctor will be added Cat remains almost the same

class Pet: public virtual Animal {
…

};
default ctor will be added Cat remains almost the same

 One critical difference: a virtual base class must be initialized by its
most derived class (Cat in this case)most derived class (Cat in this case)

Cat::Cat(char *name, char *prey, char *habitat)
: Animal(habitat), Predator(prey, habitat), Pet(name, habitat), m_lives(9) {

}}
Predator::Predator(char *prey, char *habitat) : Animal(habitat) {

m_prey = new char[strlen(prey)+1];
}

27-79 Any initialization from intermediate class is ignored.

}

Syntax of Virtual Base Classy
 Animal class is declared as before, but Predator and Pet must be

marked virtual class Predator: p blic virtual Animal {class Predator: public virtual Animal {
…

};
class Pet: public virtual Animal {

If not supplied, call to
default ctor will be added Cat remains almost the same

class Pet: public virtual Animal {
…

};
default ctor will be added Cat remains almost the same

 One critical difference: a virtual base class must be initialized by its
most derived class (Cat in this case)most derived class (Cat in this case)

Cat::Cat(char *name, char *prey, char *habitat)
: Animal(habitat), Predator(prey, habitat), Pet(name, habitat), m_lives(9) {

}

used only in

}
Predator::Predator(char *prey, char *habitat) : Animal(habitat) {

m_prey = new char[strlen(prey)+1];
}

27-80

used only in
Predator predator("a", "b");

 Any initialization from intermediate class is ignored.

}

Mix-in Inheritance
 Multiple inheritance is sometimes used to combine disparate classes

into a single abstraction This is called mix-in inheritanceinto a single abstraction. This is called mix-in inheritance.

27-81

Mix-in Inheritance
 Multiple inheritance is sometimes used to combine disparate classes

into a single abstraction This is called mix-in inheritanceinto a single abstraction. This is called mix-in inheritance.

MyclassMyclass

27-82

Mix-in Inheritance
 Multiple inheritance is sometimes used to combine disparate classes

into a single abstraction This is called mix-in inheritanceinto a single abstraction. This is called mix-in inheritance.

Persistent

MyclassMyclass

27-83

Mix-in Inheritance
 Multiple inheritance is sometimes used to combine disparate classes

into a single abstraction This is called mix-in inheritanceinto a single abstraction. This is called mix-in inheritance.

Persistent Printable

MyclassMyclass

27-84

Mix-in Inheritance
 Multiple inheritance is sometimes used to combine disparate classes

into a single abstraction This is called mix-in inheritanceinto a single abstraction. This is called mix-in inheritance.

Persistent Printable

MyclassMyclass

27-85

Mix-in Inheritance
 Multiple inheritance is sometimes used to combine disparate classes

into a single abstraction This is called mix-in inheritanceinto a single abstraction. This is called mix-in inheritance.

Persistent Printable
 Many class libraries provide classes

Myclass

 Many class libraries provide classes
with key functionalities such that a
new class can inherit required classes. Myclassq

27-86

Mix-in Inheritance
 Multiple inheritance is sometimes used to combine disparate classes

into a single abstraction This is called mix-in inheritanceinto a single abstraction. This is called mix-in inheritance.

Persistent Printable
 Many class libraries provide classes

Myclass

 Many class libraries provide classes
with key functionalities such that a
new class can inherit required classes. Myclass

 The IS-A relationship is true only viewed partially.

q

 The IS A relationship is true only viewed partially.

27-87

Mix-in Inheritance
 Multiple inheritance is sometimes used to combine disparate classes

into a single abstraction This is called mix-in inheritanceinto a single abstraction. This is called mix-in inheritance.

Persistent Printable
 Many class libraries provide classes

Myclass

 Many class libraries provide classes
with key functionalities such that a
new class can inherit required classes. Myclass

 The IS-A relationship is true only viewed partially.

q

 The IS A relationship is true only viewed partially.
 The mix-in concept can be easily abused, ex.

27-88

Mix-in Inheritance
 Multiple inheritance is sometimes used to combine disparate classes

into a single abstraction This is called mix-in inheritanceinto a single abstraction. This is called mix-in inheritance.

Persistent Printable
 Many class libraries provide classes

Myclass

 Many class libraries provide classes
with key functionalities such that a
new class can inherit required classes. Myclass

 The IS-A relationship is true only viewed partially.

q

 The IS A relationship is true only viewed partially.
 The mix-in concept can be easily abused, ex.

Person

27-89

Graduate FacultyUndergraduate

Mix-in Inheritance
 Multiple inheritance is sometimes used to combine disparate classes

into a single abstraction This is called mix-in inheritanceinto a single abstraction. This is called mix-in inheritance.

Persistent Printable
 Many class libraries provide classes

Myclass

 Many class libraries provide classes
with key functionalities such that a
new class can inherit required classes. Myclass

 The IS-A relationship is true only viewed partially.

q

Offi

 The IS A relationship is true only viewed partially.
 The mix-in concept can be easily abused, ex.

Person Office

27-90

Graduate FacultyUndergraduate

Mix-in Inheritance
 Multiple inheritance is sometimes used to combine disparate classes

into a single abstraction This is called mix-in inheritanceinto a single abstraction. This is called mix-in inheritance.

Persistent Printable
 Many class libraries provide classes

Myclass

 Many class libraries provide classes
with key functionalities such that a
new class can inherit required classes. Myclass

 The IS-A relationship is true only viewed partially.

q

Offi

 The IS A relationship is true only viewed partially.
 The mix-in concept can be easily abused, ex.

Person Office

27-91

Graduate FacultyUndergraduate

A graduate student is certainly not an office.

Private Inheritance
 Private inheritance







27-92

Private Inheritance
 Private inheritance

class Student {
public:

Student();
void setData(char *name int age);void setData(char name, int age);
int getAge() const;
const char *getName() const;

private:
char *m_name;
int *m_age;

};







27-93

Private Inheritance
 Private inheritance

class Graduate: private Student {
bli

class Student {
public:

Student();
void setData(char *name int age); public:

Graduate(char *name, int age, int stipend);
int display() const;

private:

void setData(char name, int age);
int getAge() const;
const char *getName() const;

private:
int m_stipend;

};
char *m_name;
int *m_age;

};







27-94

Private Inheritance
 Private inheritance

class Graduate: private Student {
bli

class Student {
public:

Student();
void setData(char *name int age); public:

Graduate(char *name, int age, int stipend);
int display() const;

private:

void setData(char name, int age);
int getAge() const;
const char *getName() const;

private:
int m_stipend;

};
char *m_name;
int *m_age;

};

 All public members of Student are private to Graduate.




27-95

Private Inheritance
 Private inheritance

class Graduate: private Student {
bli

class Student {
public:

Student();
void setData(char *name int age); public:

Graduate(char *name, int age, int stipend);
int display() const;

private:

void setData(char name, int age);
int getAge() const;
const char *getName() const;

private:
int m_stipend;

};
char *m_name;
int *m_age;

};

 All public members of Student are private to Graduate.
 Classes derived from Graduate would be unable to access any C asses de ved o G adua e wou d be u ab e o access a y

elements or services provided by Student.


27-96

Private Inheritance
 Private inheritance

class Graduate: private Student {
bli

class Student {
public:

Student();
void setData(char *name int age); public:

Graduate(char *name, int age, int stipend);
int display() const;

private:

void setData(char name, int age);
int getAge() const;
const char *getName() const;

private:
int m_stipend;

};
char *m_name;
int *m_age;

};

 All public members of Student are private to Graduate.
 Classes derived from Graduate would be unable to access any C asses de ved o G adua e wou d be u ab e o access a y

elements or services provided by Student.
 Private inheritance is equivalent to a HAS-A relationship.

27-97

q p
Outside client code cannot see any trace of the base class from a
derived class object.

Restoring the Accessibilityg y
 In private inheritance, individual functions can be restored to the

original access (and only to that level)original access (and only to that level).

27-98

Restoring the Accessibilityg y
 In private inheritance, individual functions can be restored to the

original access (and only to that level)original access (and only to that level).

class Student {
public:public:

Student();
void setData(char *name, int age);
int getAge() const;

h * N ()const char *getName() const;
private:

char *m_name;
int *m age;int m_age;

};

27-99

Restoring the Accessibilityg y
 In private inheritance, individual functions can be restored to the

original access (and only to that level)original access (and only to that level).

class Student {
public:public:

Student();
void setData(char *name, int age);
int getAge() const;

h * N () class Graduate: private Student {
public:

Graduate(char *name, int age, int stipend);
int display() const;

const char *getName() const;
private:

char *m_name;
int *m age; int display() const;

Student::getName;
private:

int m_stipend;
};

int m_age;
};

};

27-100

Restoring the Accessibilityg y
 In private inheritance, individual functions can be restored to the

original access (and only to that level)original access (and only to that level).

class Student {
public:public:

Student();
void setData(char *name, int age);
int getAge() const;

h * N () class Graduate: private Student {
public:

Graduate(char *name, int age, int stipend);
int display() const;

const char *getName() const;
private:

char *m_name;
int *m age; int display() const;

Student::getName;
private:

int m_stipend;
};

int m_age;
};

};

 Usage
Graduate graduateStudent("Angela", 25, 6000);

27-101

Graduate graduateStudent(Angela , 25, 6000);
cout << graduateStudent.getName();

Inherit from a Template Classp
 Assume you have a templated array class

27-102

Inherit from a Template Classp
 Assume you have a templated array class

template <class type>p yp
class Array {
public:

Array(int arraySize);
A ()~Array();

void insertElement(int slot, type element);
type getElement(int slot) const;
int getSize() const;int getSize() const;

private:
int m_arraySize;
type *m_array;

}};

27-103

Inherit from a Template Classp
 Assume you have a templated array class

template <class type>p yp
class Array {
public:

Array(int arraySize);
A ()~Array();

void insertElement(int slot, type element);
type getElement(int slot) const;
int getSize() const;int getSize() const;

private:
int m_arraySize;
type *m_array;

}};
 You want the class to also return the largest element in the array

27-104

Inherit from a Template Classp
 Assume you have a templated array class

template <class type>p yp
class Array {
public:

Array(int arraySize);
A ()~Array();

void insertElement(int slot, type element);
type getElement(int slot) const;
int getSize() const;int getSize() const;

private:
int m_arraySize;
type *m_array;

}

template <class type>

};
 You want the class to also return the largest element in the array

p yp
class NewArray: public Array<type> {
public:

NewArray(int arraySize);
type getLargest();

27-105

type getLargest();
};

Inherit from a Template Classp
 Assume you have a templated array class

template <class type>p yp
class Array {
public:

Array(int arraySize);
A ()~Array();

void insertElement(int slot, type element);
type getElement(int slot) const;
int getSize() const;int getSize() const;

private:
int m_arraySize;
type *m_array;

}

template <class type>

};
 You want the class to also return the largest element in the array

p yp
class NewArray: public Array<type> {
public:

NewArray(int arraySize);
type getLargest();

27-106

type getLargest();
};

This derived NewArray class is still a template class.

Inherit from a Template Classp
 Constructor

27-107

Inherit from a Template Classp
 Constructor

template<class type>
NewArray<type>::NewArray(int arraySize): Array<type>(arraySize) {

for (int i=0; i<arraySize; i++) insertElement(i, 0);
}

27-108

Inherit from a Template Classp
 Constructor

template<class type>
NewArray<type>::NewArray(int arraySize): Array<type>(arraySize) {

for (int i=0; i<arraySize; i++) insertElement(i, 0);
}

 Extended functionality

27-109

Inherit from a Template Classp
 Constructor

template<class type>
NewArray<type>::NewArray(int arraySize): Array<type>(arraySize) {

for (int i=0; i<arraySize; i++) insertElement(i, 0);
}

 Extended functionality
template<class type>
type NewArray<type>::getLargest() {yp y yp g g () {

type largest = getElement(0);
for (int i=1; i<getSize(); i++)

if (getElement(i) > largest)
l t tEl t(i)largest = getElement(i);

return largest;
}

27-110

Inherit from a Template Classp
 Constructor

template<class type>
NewArray<type>::NewArray(int arraySize): Array<type>(arraySize) {

for (int i=0; i<arraySize; i++) insertElement(i, 0);
}

 Extended functionality
template<class type>
type NewArray<type>::getLargest() {yp y yp g g () {

type largest = getElement(0);
for (int i=1; i<getSize(); i++)

if (getElement(i) > largest)
l t tEl t(i)

U

largest = getElement(i);
return largest;

}

 Usage

27-111

Inherit from a Template Classp
 Constructor

template<class type>
NewArray<type>::NewArray(int arraySize): Array<type>(arraySize) {

for (int i=0; i<arraySize; i++) insertElement(i, 0);
}

 Extended functionality
template<class type>
type NewArray<type>::getLargest() {yp y yp g g () {

type largest = getElement(0);
for (int i=1; i<getSize(); i++)

if (getElement(i) > largest)
l t tEl t(i)

U

largest = getElement(i);
return largest;

}

 Usage void main() {
NewArray<double> array(20);
array.insertElement(0, 4.6);

27-112

array.insertElement(5, 12.6);
cout << array.getLargest();

}

Inherit from a Template Classp
 Constructor

template<class type>
NewArray<type>::NewArray(int arraySize): Array<type>(arraySize) {

for (int i=0; i<arraySize; i++) insertElement(i, 0);
}

 Extended functionality
template<class type>
type NewArray<type>::getLargest() {yp y yp g g () {

type largest = getElement(0);
for (int i=1; i<getSize(); i++)

if (getElement(i) > largest)
l t tEl t(i)

U

largest = getElement(i);
return largest;

}

Output
12 6

 Usage void main() {
NewArray<double> array(20);
array.insertElement(0, 4.6);

27-113

12.6array.insertElement(5, 12.6);
cout << array.getLargest();

}

