
OOD Smells and PrinciplesOOD Smells and Principles

C Obj O i d P iC++ Object Oriented Programming
Pei-yih Ting

NTOUCS

31-1

Contents
 Unplesant Code Smells vs. Refactoring Unplesant Code Smells vs. Refactoring

 Bad Design Smells vs. Design Principles – SOLID
Single Responsibility Principle (SRP)

Open Closed Principle (OCP)Open Closed Principle (OCP)

Liskov Substitution Principle (LSP)

IInterface Segregation Principle (ISP)

Dependency Inversion Principle (DIP)p y p ()

 Other Design Principles

31-2

Unpleasant Code Smellsp

1 D li t d C d 12 L Cl
Refactoring: Improving the Design of Existing Code by M. Fowler et. al.

1. Duplicated Code
2. Long Method
3 Large Class

12. Lazy Class
13. Speculative Generality
14 Temporary Field3. Large Class

4. Long Parameter List
5. Divergent Change

14. Temporary Field
15. Message Chains
16. Middle Mang g

6. Shotgun Surgery
7. Feature Envy

17. Inappropriate Intimacy
18. Alternative Classes with

8. Data Clumps
9. Primitive Obsession

Different Interfaces
19. Incomplete Library Class
20 D t Cl10. Switch Statements

11. Parallel Inheritance
Hierarchies

20. Data Class
21. Refused Bequest
22 Comments

31-3

Hierarchies 22. Comments

https://sourcemaking.com/refactoring/bad-smells-in-code

Refactoringg
 Refactoring: A change made to the internal structure of software to

make it easier to understand and cheaper to modify without p y
changing its observable behavior.

 Refactor: Restructure software by applying a series of refactorings
ith t h i it b bl b h iwithout changing its observable behavior.

 Kent Beck's two hats metaphor in developing software:
Y dd f ti lit d li h i ld b You try to add a new functionality, and realize that it would be
much easier if the code were structured differently.

 So you swap hats and refactor for a while. So you swap hats and refactor for a while.
 Refactorings: https://sourcemaking.com/refactoring

 Composing methods (Extract method, Inline method, Inline temp, …)
 Moving features between objects (Move method, …)
 Organizing data (Self encapsulate field, …)
 Simplifying conditional expression ()

31-4

 Simplifying conditional expression (…)
 Making method call simpler (…)
 Dealing with generalization (…)

https://refactoring.com/catalog/

Bad Design Smellsg
 Rigidity – The system is hard to change because every change

forces many other changes to other unrelated parts of the systemforces many other changes to other unrelated parts of the system
 Fragility – Changes cause the system to break in places that have no

conceptual relationship to the part that was changedconceptual relationship to the part that was changed
 Immobility – It is hard to disentangle the system into components

that can be reused in other systems.y
 Viscosity – Doing things right is harder than doing things wrong.
 Needless Complexity – The design contains infrastructure that adds p y g

no direct benefit.
 Needless Repetition – The design contains repeating structures that

could be unified under a single abstraction.
 Opacity – The design is hard to read and hard to understand. It

31-5

does not express its intents well.

Agile Designg g
Software design involves iterations of the following steps:

S 1 D i d i l h i d f i Step 1: Design and implement the required functions
 Step 2: Diagnose the problem following the smell of poor design

and appl ing design principlesand applying design principles
 Step 3: Solve the problem by applying appropriate design pattern

 Agile teams apply principles to remove bad smells.
Th d ’ l i i l h h llThey don’t apply principles when there are no smells.

 It is a mistake to unconditionally conform to a principle.
Indeed, over-conformance to a principle leads to the

31-6

, p p
design smell of Needless complexity.

Single Responsibility Principle S g e espo s b y c p e
 Each responsibility is an axis of change When the requirements

A class should have only one reason to change.
 Each responsibility is an axis of change. When the requirements

change, that change is likely manifest through a change in
responsibility amongst the classes.

 If a class has more than one responsibility, then the responsibilities
become coupled. Changes to one responsibility may impair or inhibit
the ability of the class to meet other requirementsthe ability of the class to meet other requirements.

 Thus, it is important to separate different responsibilities into
separate classes. RectangleComputational

G Graphicalp
+draw()
+area(): double

Geometry
Application

Graphical
ApplicationPossible problems:

 Computational Geometry
GUIApplication depends on GUI transitively.

 area() and draw() are two unrelated responsibilities
If GraphicalApplication causes draw() to change or GUI changes

31-7

If GraphicalApplication causes draw() to change or GUI changes
somehow, these changes force us to rebuild, retest, and redeploy the
ComputationalGeometryApplication.

Separated Responsibilitiesp p
 Separate two responsibilities into two completely different classes p p p y

by moving the computational portions of the Rectangle into the
GeometricRectangle class.

G hi lComputational Graphical
Application

Computational
Geometry

Application

GeometricRectangle
+area(): double

Rectangle
+draw()

GUI

 Now changes made to the way rectangles are rendered cannot affect

31-8

g y g
the ComputationalGeometryApplication.

SRP Violation
class Modem {
public:

id di l(t i h N)

 Two responsibilities:
 connection managementvoid dial(string phoneNo);

void hangup();
void send(char c);
char recv(); Should these two responsibilities

g
 data communication

char recv();
};

Should these two responsibilities
be separated as two classes?

 M b t it d d h th li ti i h i Maybe not, it depends on how the application is changing.
 If connection management signature changes alone, then the clients that use

send() and recv() have to be recompiled and redeployed.

<<interface>>
Connection

+dial(pno:string)

<<interface>>
Data

Channel
d(h)

 If, on the other hand, the application
is not changing in ways that cause the
two responsibilities to change at dial(pno:string)

+hangup()+send(c:char)
+recv():char

 Using separate interfaces (as used
by Interface Segregation Principle)

different times.

31-9

Modem
Implementation

by Interface Segregation Principle)
is another way to decouple the clients.

Open Closed PrincipleOpen Closed Principle
Software entities (classes, modules, functions, etc.)

h ld b f t i b t l d f difi ti
 Open for extension: the behavior of the module can be extended. As

th i t f th li ti h bl t t d th

should be open for extension, but closed for modification.

the requirements of the application change, we are able to extend the
module with new behaviors that satisfy those requirement changes.

 Closed for modification: Extending the behavior of a module does Closed for modification: Extending the behavior of a module does
not result in changes to the source or object code of the module, even
the binary executable version of the module remains untouched.y

 How is it possible that the behaviors of a module can be modified
without changing its source code? How can one change what a g g g
module does, without changing the module?

the key is Abstraction
31-10

the key is Abstraction
Interface (Design by Contract, DbC)

w/o Suitable Abstraction
 When a single change to a program results in a cascade of changes to

dependent modules the design smells of Rigiditydependent modules, the design smells of Rigidity.
 Violation of OCP: simple client-server

Client is not open and closed.
Client Server

Client is not open and closed.
Whenever the server code changes, the client code must change.

struct Modem {

void logOn(Modem &m, string& pno, string& user, string& pw) {
if (m.type == Modem::hayes)

enum Type {hayes, courrier, ernie} type;
};
struct Hayes {

Modem::Type type; (yp y)
dialHayes((Hayes&)m, pno);

else if (m.type == Modem::courrier)
dialCourrier((Courrier&)m, pno, user);

yp yp ;
// Hayes related stuff

};
struct Courrier {

Modem::Type type; (() p)
else if (m.type == Modem::ernie)

dialErnie((Ernie&)m, pno, user, pw);
// … Adding a new modem would add

ode :: ype type;
// Courrier related stuff

};
struct Ernie {

Modem::Type type;

31-11

}
Adding a new modem would add

else if (m.type == Modem::xxx)
…

everywhere in its client programs

Modem::Type type;
// Ernie related stuff

};

With Good Abstraction
 In C++, it is possible to create abstractions that are fixed and yet

represent an unbounded group of possible behaviors
 In C++, it is possible to create abstractions that are fixed and yet

represent an unbounded group of possible behaviors. The p g p f pp g p f p
abstractions are abstract base classes, and the unbounded group of
possible behaviors is represented by all possible derived classes

Client <<interface>>

Client Interface OCP conforming designs:
 Strategy pattern

Server
Policy

Client and Client Interface
are both open and closed.

fi d i f Policy
+PolicyFunction()
-ServiceFunction()

program to a fixed interface
(design-by-contract).

Implementation
-ServiceFunction()

 Template Method pattern
Policy is both open and closed.

31-12

 If OCP is applied well, further changes of that kind will be achieved
by adding new codes, not by changing old codes that already work.

Liskov Substitution PrincipleLiskov Substitution Principle
Subtypes must be substitutable for their base types.

 The importance of this principle becomes obvious when you
consider the consequences of violating it. BaseBase

Derived

void main() {
Derived dObj;
f(&dObj);

void client(Base *bp) {
….

} (j)
}

}

 Will client() behaves normally when dObj is passed as a Base?
If the functionality of client(&dObj) breaks down, then dObj is not
substitutable for a Base object.

 The author of client() will be tempted to put in some kind of test for
Derived so that client() can behave properly when Derived is passed

 The author of client() will be tempted to put in some kind of test for
Derived so that client() can behave properly when Derived is passed

31-13

to it.to it. Typically, this violates also OCP because now client() is not
closed to various derived classes of Base.

Violation of LSP
 Symptoms:

U ll i l ti f OCP
, “downcast”“Using code to select code” , “type-flags”

struct Point {
double x y;

 Usually cause violation of OCP

double x, y;
};
struct Circle: public Point {struct Circle: public Point {

double radius;
};

double areaTriangle(Point *vertices[3]) { // not closed
for (int i=0; i<3; i++)

};

for (int i 0; i 3; i)
if (dynamic_cast<Circle *>(vertices[i])) // cannot take a Circle

return -1.0;

31-14

… // calculate the area
}

Rectangle and Squareg q
 A square IS-A rectangle with equal width and height in

mathematical sense A sort of specializationmathematical sense. A sort of specialization.
class Rectangle {
public: Implementation:

Rectangle
virtual void setWidth(double w) {m_width=w;}
virtual void setHeight(double h) {m_height=h;}
double getWidth() {return m width;}

Square

g () { _ ;}
double getHeight() {return m_height;}

private:
Point m topLeft; double m width m height;Point m_topLeft; double m_width, m_height;

};
class Square: public Rectangle {

blipublic:
void setWidth(double w) {Rectangle::setWidth(w); Rectangle::setHeight(w);}
void setHeight(double h) {Rectangle::setWidth(h); Rectangle::setHeight(h);}

31-15
 Is a Square substitutable for a Rectangle in all sorts of clients?

};

Rectangle and Square (cont’d)g q ()
Square s;
s.setWidth(1); // set both width and height to 1s.se W d (); // se bo w d a d e g o
s.setHeight(2); // set both width and height to 2
// good, won’t be able to mess a square with different width and height

void f(Rectangle& r) {
r.setWidth(32); // if r is a Square, width and height will be set to 32() q g

} // if r is a Rectangle, only width is set to 32

void g(Rectangle& r) { // this function breaks down if r is a Squarevoid g(Rectangle& r) { // this function breaks down if r is a Square
r.setWidth(5);
r.setHeight(4);

void g(Rectangle& r) {
if (dynamic cast<Square *>(&r)==0) {g ()

assert(r.area() == 20);
}

if (dynamic_cast<Square >(&r) 0) {
r.setWidth(5); r.setHeight(4);
assert(r.area() == 20);

31-16

}
}

Violate LSP

Interface Segregation Principlete ace Seg egat o c p e
 “Fat” interface:

i t f Smells of Rigidity and Viscosity
non-cohesive interface with diverse functionalities.

<<interface>>
TimerClient
+timeout()

Timer
+register() The interfaces of the class

should be dissected into groups

 Smells of Rigidity and Viscosity

Door Door
Cli t

should be dissected into groups
of methods. Each serves a
different set of clients. Door ClientExample: In a security application, a

door needs to sound an alarm when
it has been left open for too long

class Door class Timer {
public:

TimedDoorit has been left open for too long.
<<create>>class Door: public TimerClient

{
p blic:

p
void register(int timeout, TimerClient *client);

};
class TimerClient {

public:
virtual void lock() = 0;
virtual void unlock();
virtual bool isDoorOpen();

31-17

public:
virtual void timeout() = 0;

};Interface Pollution

virtual bool isDoorOpen();
};

Separate Interfacesp
 Smells of Rigidity and Viscosity: changes of TimerClient interface

affect the clients of Door interface and force recompilationaffect the clients of Door interface and force recompilation.
 Violation of LSP: if a door does not have timeout feature, this new

Door derived class although inherit Door interface has to give a nilDoor-derived class, although inherit Door interface, has to give a nil
implementation of timeout().

 If l ith lti l ibiliti id bl t l t If classes with multiple responsibilities are unavoidable, at least
avoiding fat/non-cohesive interface, so that clients of a particular
interface do not know and affected by changes on unrelated interfaceinterface do not know and affected by changes on unrelated interface.

 Decoupling clients means separate interfaces: since the clients Timer
and DoorClient are separate the interfaces should also be separateand DoorClient are separate, the interfaces should also be separate.

 Interface Segregation Principle:

31-18

Client should not be forced to depend on
methods that they do not use.

Separation of Interfacesp

i f

 Separation through Multiple Inheritance

Door Door
Client

<<interface>>
TimerClient
+timeout()

Timer
+register()

TimedDoor Class Adapter Pattern

 Separation through Delegation

TimedDoor
<<create>>

Even if TimerClient interface changes,
doorTimeout() is not affected and

p

certainly DoorClient is not affected.

Door Door
Client

<<interface>>
TimerClient
+timeout()

Timer
+register()

Client+timeout()

DoorTimer
Ad tObject Adapter

31-19
<<create>> +doorTimeout()

TimedDoor
<<create>>

Adapter
+timeout()

j p
Pattern

ATM User Interface Examplep

<<interface>>

 The user interface of an automated teller machine (ATM) needs to be
very flexible

 The user interface of an automated teller machine (ATM) needs to be
very flexible – there are many

 There are different types of

<<interface>>

ATM UI
+requestDepositAmount()
+requestWithdrawalAmount()

very flexiblevery flexible there are many
forms of interfaces.

 There are different types of
<<interface>>

ATM UI

yp
transactions.

+requestWithdrawalAmount()
+requestTransferAmount()
+informInsufficientFunds()

yp
transactions. Each transaction
uses methods of the ATM UI

Screen UI Speech UI Braille UI If we want to add a
P G Bill t ti

that no other classes uses.

+execute()

Transaction
{abstract}

PayGasBill transaction, we
would have to add new
methods to ATM UI to deal

Deposit

+execute()

Withdrawal Transfer

methods to ATM UI to deal
with specific messages. This
change would affect all

31-20

Deposit Withdrawal Transfertransaction classes.
 Smells of Rigidity and Viscosity

Separation of ATM UI Interfacesp
Transaction

{abstract}
+execute()

{ }

Withdrawal TransferDeposit

i t f i t fi t f

+requestDepositAmount()

<<interface>>

Deposit UI
+requestTransferAmount()
+i f I ffi i tF d ()

<<interface>>

Transfer UI
+requestWithdrawalAmount()
+informIns fficientF nds()

<<interface>>

Withdrawal UI

<<interface>>
ATM UI

+informInsufficientFunds()+informInsufficientFunds()

ATM UI
+requestDepositAmount()
+requestWithdrawalAmount()

31-21
+requestTransferAmount()

q ()
+informInsufficientFunds()

Dependency Inversion PrincipleDependency Inversion Principle
a. High-level modules should not depend on low-level modules.

Both should depend on abstractions.
b. Abstractions should not depend on details. Instead, Details

h ld d d P li

 Traditional top-down “structured analysis and design” tends to

should depend on Policy.

create software structures in which
 high-level modules depend on well-developed low-level modules
 policy depends on details

because high-level policy modules make function calls to low-level

 The dependency structure of a well-designed, object-oriented
library modules.

31-22

program is “inverted” with respect to the dependency structure that
normally results from traditional procedural designs.

Dependency Managementp y g
 Dependency between ClassA and ClassB: a change in the interface

of ClassB necessitate changes in the implementation of ClassAof ClassB necessitate changes in the implementation of ClassA
 ClassA has a ClassBmember object or member pointer
 ClassA is derived from ClassB ClassA ClassB

dependency

 ClassA has a function that takes a parameter of type ClassB
 ClassA has a function that uses a static member of ClassB
 ClassA sends a message (a method call) to ClassB
In each case, it is necessary to #include "classB.h" in classA.cpp.

 Code reuse an important goal always produces dependencies Code reuse, an important goal, always produces dependencies.
 When designing classes and libraries it is important to make sure

that we produce as few unnecessary or unintentional dependenciesthat we produce as few unnecessary or unintentional dependencies
as possible because they slow down compile and reduce reusability.

 Forward class declarations make it possible for classes to have Forward class declarations make it possible for classes to have
circular relationships without having circular dependencies
between header files. 23-23

Application’s Most Valuable Partpp
 The high-level modules contain the important policy decisions and

business models of an applicationbusiness models of an application.
 It is the high-level, policy-setting modules that ought to be

influencing the low-level, detailed modules (Mechanism and Utility).influencing the low level, detailed modules (Mechanism and Utility).
 It is the high-level, policy-setting modules that we want to reuse, i.e.

the “factoring” style of reuse. When high-level modules depend on g y g p
low-level modules, it becomes very difficult to reuse those high-
level modules in different contexts.

 DIP is at the very heart of framework design.
 Naïve layering scheme: policy layer is sensitive to changes in

mechanism layer and all the way down to utility layer
Policy Layer dependency

dependency

31-24

Mechanism Layer
Utility Layer

dependency

Inversion of Dependencyp y
Policy

<<interface>>

abstractions

i i h itPolicy Layer Policy Service
Interface

DbC

using inheritance
to conform to the
Interface spec

Mechanism La er

Mechanism
<<interface>>

Mechanism ServiceMechanism Layer

Utilit

Mechanism Service
Interface

l l d l id h i l i f i f
Utility Layer

Utility

 Lower-level modules provide the implementation for interfaces.
 Inversion of interface ownership: interface belongs to its client,

instead of the class that implements it

31-25

instead of the class that implements it.
 Policy Layer is unaffected by any changes to Mechanism Layer or

Utility Layer

Fundamental Theorem of
Software Engineering (FTSE)

"We can solve any problem by introducing an extra
level of indirection.”f

originated by Andrew Koenig

 This is a general principle for managing complexity through
abstraction.

 except for the problem of too many levels of indirection

31-26

Another DIP Examplep
 Dependency inversion can be applied wherever one class sends a

message to anothermessage to another.

Button
Lamp

+turnOn()
 Naïve Model

Sh ld B tt l l d d th L l ?

+pressed()
turnOn()

+turnOff()

Should a Button class always depend on the Lamp class?

B
<<interface>>

ButtonServer DIP applied Button
+pressed()

ButtonServer
+turnOn()
+turnOff()

 DIP applied

()

Lamp

An interface does not depend on its client,
thus, the name of the interface – ButtonServer

31-27

Lamp
can be renamed to something more generic like SwithchableDevice

Law of Demeter (LoD)Law of Demeter (LoD)
 A specific case of loose coupling

 Each unit should have only limited knowledge about other units Each unit should have only limited knowledge about other units
 Each unit should only talk to its immediate friends (do not pry into the

privacy of your friend)

a given object should assume as little as possible about
the structure or properties of anything else (including its

 Least Knowledge Principle
subcomponents), in accordance with the principle of
information hiding

 The method m of an object O may only invoke methods of
 O itself m’s parameters
 O’s direct components Any objects created within m

 a b c method() e g when one wants a dog to walk one does not command
 avoid invoking methods of an object returned by another method

31-28

 a.b.c.method() e.g. when one wants a dog to walk, one does not command
the dog's legs to walk directly; instead one commands the dog which then
commands its own legs.

Law of Demeter (cont’d)Law of Demeter (cont d)
 Example from Apache that might violate this rule:

ctxt getOptions() getScratchDir() getAbsolutePath()ctxt.getOptions().getScratchDir().getAbsolutePath()
 It’s not the problem of chaining calls. It could still violate the rule if

decomposed as ops = ctxt.getOptions();decomposed as ops ctxt.getOptions();
scratchDir = opts.getScratchDir();
scratchDir.getAbsolutePath();

 Example “Paperboy & Wallet” that violates this rule:

 Consider instead: ctxt.createScratchFileStream(classFileName);

p p y
if (myCustomer.getWallet().getTotalMoney() > bill)

myCustomer.getWallet().subtractMoney(bill);
 Wrapper solution: if (myCustomer.getPayment(bill)) …
 Again, chaining calls is not the problem, it’s only a phenomenom. Again, chaining calls is not the problem, it’s only a phenomenom.

31-29

g , g p , y pg , g p , y p
The real issue is whether Walltet Customer::getWallet() breaks
the encapsulation of class Customer.

Law of Demeter (cont’d)Law of Demeter (cont d)
 Chaining calls are fine if target object is public or is itself or a friend

 can as getDimension() getWidth() canvas.getDimension().getWidth()
 stringBuilder.append(..).delete(..).insert(..)

 Unplesant code smells - Unplesant code smells - Feature Envy: Unplesant code smells - Feature Envy: A method accesses the data
of another object more than its own data

 Advantages:
 resulting software are more maintainable and adaptable since objects resulting software are more maintainable and adaptable since objects

are less dependent on the internal structure of other objects.
 narrower interface in the method level

 Disadvantages:
 have to write many wrapper methods to propagate calls to components

31-30

 have to write many wrapper methods to propagate calls to components
 wider interface in the class level

Single Choice PrincipleSingle Choice Principle
Whenever a software system must support a set of alternatives, one

d l d l i h h ld k h i h i li

 Assume we have a graphic system with the

and only one module in the system should know their exhaustive list.
Shape

Shape- Circle-Square class hierarchy describing
objects drawable on the screen.

+draw()

Ci l SCircle

+draw()

Square

+draw() Assume that these graphical objects are serialized
in the file as

ArrayList shapes;
if (type=="circle")

shapes.add(new Circle(filestream)); This exhaustive list
should appear only

define share {
type=circle
location=25,6
…

else if (type=="square")
shapes.add(new Square(filestream));

…
l if (t "XXX")

should appear only
once in the program
and no more.

}
define shape {
type=square
location=36,10

31-31

else if (type=="XXX")
shapes.add(new XXX(filestream));

and no more.location 36,10
…
}

Other OOD Principlesp
 Don't Repeat Yourself
 Program to an Interface Not an Implementation (DbC) Program to an Interface, Not an Implementation (DbC)
 Depend on Abstractions, Not Concrete classes
 H ll d P i i l D ’d ll ’ll ll (DIP) Hollywood Principle - Don’d call us, we’ll call you (DIP)
 Encapsulate What Varies.

F C iti I h it Favor Composition over Inheritance
 Apply Design Pattern wherever possible

S i f L l C l d S Strive for Loosely Coupled System
 Keep it Simple and Sweet / Stupid
 Principle of Least Astonishment
 Package Cohesion Principles
 Package Coupling principle

31-32

