150 Chapter 3 / Data Structures

3.6 Disjoint Sets

In this section, we discuss an abstract data type that contains nonempty
pairwise disjoint sets (i.e., for all sets X and Y in the container, X + &,
Y # @, and either X = Y or X n Y = @). Furthermore, each set X in the
container has one of its members marked as a representative of that set.
The operations supported are:

e makeset(i): Construct the set {i}.
e findset(i): Return the marked member of the set to which i belongs.

« union(i, j): Replace the sets containing i and j with their union. (It is
assumed that i and j do not belong to the same set.)

We assume that the elements of the sets are positive integers.

Example 3.6.1. After

makeset (1)
makeset(2)
makeset(3)
makeset (4)
makeset(5)

we have
{13, {2}, {3}, {4}, {5}.
Each element is marked; so, the value of
findset (i)

is i, for all i.
After

union(1, 4)
union(3, 5)

we have
{1,4}, {2}, {3,5}.
If we assume that 4 is marked, the value of
findset(1)
or
findset (4)

is 4.
Notice that findset can be used to check whether elements i and j belong
to the same set. For example,

findset(1) == findset(4)
is true; but
findset(2) == findset(3)

3.6 / Disjoint Sets 151

is false. (The value of findset(2) is 2, and the value of findset(3) is either 3
or 5, whichever is marked.)

After

union(4, 2)
we have

{1,2,4}, {3,5}

and after

union(1,5)
we have

{1,2,3,4,5}.

Now the value of findset(i) is the same for all i. (The common value is
whichever element is marked in the set {1, 2, 3,4, 5}.) 0O

To implement the disjoint-set abstract data type, we represent a set as
a tree with the marked element as the root. The elements in a set are not
arranged in any special way, and the tree is not necessarily a binary tree.

Example 3.6.2. Three of the many ways to represent the set {2,4, 5, 8}, with
5 as the marked element, are shown in Figure 3.6.1.

5

5 8

5 2 4 2

248 8 4
Figure 3.6.1 Representations of the set {2,4,5, 8}, with 5 as the marked
element. O

We represent disjoint sets using an array, parent, in which the value,
parentli], is the parent of i, unless i is the root. In the latter case, the value
of parent[i] is i.

Example 3.6.3. If the disjoint sets
{2,4,5,8}, {1}, {3,6,7}

are represented by the trees shown in Figure 3.6.2, the parent array is

1 5 7 5 5 7 7 2

1 2 3 4 5 6 7 8

152

Chapter 3 / Data Structures

5

/\

T 4 A
8 1 3 6
Figure 3.6.2 Disjoint sets represented as trees. a

We turn now to algorithms to manipulate disjoint sets represented as
trees. We begin with the first version of makeset, which is straightforward.

Algorithm 3.6.4 Makeset, Version 1. This algorithm represents the set {i}
as a one-node tree.

Input Parameter: i
Output Parameters: None

makeset1(i) {
parent[i] =1

}

The first version of findset simply follows a path from the input element
to the root.

Algorithm 3.6.5 Findset, Version 1. This algorithm returns the root of the
tree to which i belongs.

Input Parameter: i
Output Parameters: None

findset1(i) {
while (i = parent[i])
i = parent|i]
return i

}

Algorithm 3.6.5 returns the root since, by convention, i is equal to the
root precisely when i and parent[i] are equal.

To compute the union of two sets, we must merge the trees that represent
them. To merge the trees, we make one root a child of the other root. The
following algorithm gives the details. The algorithm assumes that the input
is the two roots.

Algorithm 3.6.6 Mergetrees, Version 1. This algorithm receives as input the
roots of two distinct trees and combines them by making one root a child of
the other root.

3.6 / Disjoint Sets 153

Input Parameters: i, j
Output Parameters: None

mergetrees1(i, j) {
parent[i] = j
}

Example 3.6.7. Given the disjoint sets as represented in Figure 3.6.2, after

mergetrees1(5,1)

we obtain
1
5
T 4 A
8 3 6
After

mergetrees1(7,1)
we obtain
1

2
AN
»

8 a

The union algorithm receives as input two arbitrary values (i.e., the values
are not necessarily roots). It first invokes findsetl {(Algorithm 3.6.5) to find
the roots of the trees and then invokes mergetreesl (Algorithm 3.6.6).

Algorithm 3.6.8 Union, Version 1. This algorithm receives as input two
arbitrary values i and j and constructs the tree that represents the union of
the sets to which i and j belong. The algorithm assumes that i and j belong
to different sets.

Input Parameters: 1, j
Output Parameters: None

154

Chapter 3 / Data Structures

unionl(i, j) {
mergetreesl(findsetl(i), findset1(j))
}

We next consider the time required by our disjoint-set algorithms. When
these algorithms are used, there are typically many calls to the various al-
gorithms; thus, we are interested in the total time required when these al-
gorithms are called repeatedly. Therefore, we assume throughout the re-
mainder of this section that there are n makeset operations and a total of m
union and findset operations. We also assume that the makeset operations
are performed first.

Since the makeset algorithm (Algorithm 3.6.4) runs in constant time, the
n makeset operations take time @(n). The worst-case time of findset (Algo-
rithm 3.6.5) for any tree occurs when the argument is a node at the lowest
level. In this case, the time is proportional to the height of the tree. The max-
imum height of a tree with 7 nodes is n — 1 (which occurs when each parent
has exactly one child). Thus, the time of findset is O (7). The union algorithm
(Algorithm 3.6.8) calls the findset algorithm twice and the mergetrees algo-
rithm (Algorithm 3.6.6) once. Since the mergetrees algorithm runs in time
©(1) and the findset algorithm runs in time O(#), the union algorithm runs
in time O (n). The findset and union algorithms are called a total of m times.
Therefore, the time required by the findset and union algorithms is O(mn),
and the time required by all of the algorithms is O(n + mn), where there are
n makeset operations and a total of m union and findset operations.

If m < n, we can derive a sharper estimate. In this case, the height of any
tree is at most m (see Exercise 7); so, the time required by the findset and
union algorithms is O (m?). Thus, the time required by all of the algorithms
is O (n+m?). Itfollows that for any value of m, the time required by all of the
algorithms is O(n + m - min{m, n}). We leave as an exercise (see Exercise 8)
to show that this estimate is sharp, that is, that the worst-case time required
by all of the algorithms is Q(n+m-min{m, n}). It follows that the worst-case
time required by all of the algorithms is @(n + m - min{m, n}), where there
are n makeset operations and a total of m1 union and findset operations.

The time of the findset algorithm, and by extension the time of the union
algorithm, is bounded by the height of the tree. It follows that we can im-
prove the performance of our algorithms if we can constrain the tree heights.

Notice that when we execute unionl(5, 1) for the trees in Figure 3.6.2, we
obtain

|
A

2 4
8

3.6 / Disjoint Sets 155

We have increased the maximum height among the trees to 3 because we
made the tree with the greater height a subtree of the tree with the smaller
height. Had we made the tree with the smaller height a subtree of the tree
with the greater height

)
2 4 1

we would not have increased the maximum height among all trees. In order
to make the tree with the smaller height a subtree of the tree with the greater
height, we maintain an array height, in which height[i] is the height of the
tree rooted at i. The revised algorithms follow.

Algorithm 3.6.9 Makeset, Version 2. This algorithm represents the set {i}
as a one-node tree and initializes its height to 0.

Input Parameter: i
Output Parameters: None

makeset2(i) {
parent[i] =i
height[i] =0
}

The findset algorithm is unchanged.

Algorithm 3.6.10 Findset, Version 2. This algorithm returns the root of the
tree to which i belongs:

Input Parameter: i
Output Parameters: None

findset2(i) {
while (i != parent[i])
i = parent[i]
return i

}

Algorithm 3.6.11 Mergetrees, Version 2. This algorithm receives as input
the roots of two distinct trees and combines them by making the root of the
tree of smaller height a child of the other root. If the trees have the same
height, we arbitrarily make the root of the first tree a child of the other root.

Input Parameters: 1, j
Output Parameters: None

156

Chapter 3 / Data Structures

mergetrees2(i, j) {

if (heightli] < height[j])
parent[i] = j

else if (height[i] > height[j])
parent[j] =1

else {
parent(i] = j
height[j1 = height[j] + 1

}

The union algorithm now calls mergetrees2 and findset2.

Algorithm 3.6.12 Union, Version 2. This algorithm receives as input two
arbitrary values i and j and constructs the tree that represents the union of
the sets to which i and j belong. The algorithm assumes that i and j belong
to different sets.

Input Parameters: i, j
Output Parameters: None

union2(i, j) {
mergetrees2(findset2 (i), findset2(j))

1
i

Example 3.6.13. Suppose that we begin by calling makeset2[i] for i = 1 to
8. The resulting trees are the singleton nodes and the arrays are

parent height
1 2 314 |5 |61 7]|38 ojlo|0]0|0]0}!070
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

When union2(8,2) is called, mergetrees? is called as mergetrees2(8, 2).
Since height[8] and height[2] are equal, mergetrees?2 executes

parent[8] = 2
height{2] = height[2] + 1

The trees become

1 3 4 5 6 7 8

and the arrays become

parent height

1 2 3 4

9]
(e}
~
[

o |
—
<
o
]
()
o
o

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

3.6 / Disjoint Sets 157

Similarly, after

union2(4,5)
union2(3,7)

the trees become
2 5 7

1 6 8 4 3

and the arrays become

parent height
1 2 7 5 5 6 7 2 0 1 0 0 1 0 1 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

When union2(3, 6) is called, mergetrees?2 is called as mergetrees2(7,6).
Since height[7] > height[6], mergetrees?2 executes

parent[6] = 7
The trees become
2 5 7

VAN

1 8 4 3 6

and the arrays become

parent height
1 2 7 5 5 7 7 2 0 1 0 0 1 0 1 0
1 2 3 4 5 .6 7 8 1 2 3 4 5 6 7 8

a

In version 1 of our disjoint-set algorithms, the height of a k-node tree was
at most k — 1. We show that, in version 2, the height of a k-node tree is at
most [I1gk].

Theorem 3.6.14. Using version 2 of the disjoint-set algorithms (Algorithms
3.6.9-3.6.12), the height of a k-node tree is at most [1g k|.

Proof. The proof is by induction on k, and the basis step is k = 1. Since a
one-node tree has height zero, the statement is true in this case.

Now suppose that k > 1, and for all p < k, the height of a p-node tree is at
most |1g p|. Let T be a k-node tree. Since k > 1, T is the union of two trees:
T1, of height hy with k; < k nodes; and T>, of height h, with k» < k nodes.
By the inductive assumption, b < |1gk:1] and hy < [Igk2]. If hy # hj, the
height of T is

max{hi, hy} < max{llgk,],|lgk2]} < |lgk].

158

Chapter 3 / Data Structures

Now suppose that h; = h,. We may assume that k; > k. Notice that
k> < k/2. (If this last inequality is false, we have ko > k/2 and k1 = k2 > k/2,
which implies that k = k; + k2 > k.) The height of T is

1+hy<1+|lgks) <1+ lgk/2]=1+10gk)-1]=|Igkl].

The inductive step is complete. [|

Consider the time required by version 2 of the disjoint-set algorithms.
The makeset algorithm (Algorithm 3.6.9) still runs in constant time, and the
n makeset operations take time ©(n). By Theorem 3.6.14, the height of
any tree is bounded by lgn. Thus, the time of findset (Algorithm 3.6.10)
is O(lgn). The union algorithm (Algorithm 3.6.12) calls the findset algo-
rithm twice and the mergetrees algorithm (Algorithm 3.6.11) once. Since
the mergetrees algorithm runs in time ©(1) and the findset algorithm runs
in time O(Ign), the union algorithm runs in time O(lgn). The findset and
union algorithms are called a total of m times. Therefore, the time required
by the findset and union algorithms is O(mlgn), and the time required by
all of the algorithms is O (n + m1g n), where there are n makeset operations
and a total of m union and findset operations.

As for version 1 of our disjoint-set algorithms, if m < n we can derive
a sharper estimate. We first note that after makeset initializes the parent
array, each cell in the parent array is modified at most one time—by a call
to union. In a tree containing k nodes, each node, except the root, has had
its cell in the parent array modified (since it is no longer a root). There-
fore, a tree with p nodes was constructed by exactly p — 1 calls of the
union algorithm. Let k be the number of times the union algorithm was
called. From our preceding comments, each tree has atmostk+1<m +1
nodes. By Theorem 3.6.14, the height of any tree is bounded by lg(m + 1).
Thus, the time required by the findset and union algorithms is O (mlgm),
and the time required by all of the algorithms is O(n + mlgm). It fol-
lows that for any value of m, the time required by all of the algorithms is
O(n + m - min{lgm,lgn}). We leave as an exercise (see Exercise 9) to show
that this estimate is sharp, that is, that the worst-case time required by all of
the algorithms is Q(n + m - min{lgm,lgn}). It follows that the worst-case
time required by all of the algorithms is ®(n + m - min{lgm,lgn}), where
there are n makeset operations and a total of m union and findset opera-
tions.

The final enhancement to the disjoint-set algorithms involves the findset
algorithm. Again, our goal is to decrease the heights of the trees. In the
call findset(i), after locating the root, we make every node on the path from
i to the root, except the root itself, a child of the root, thereby potentially
decreasing the height of the tree. This process is called path compression.

Example 3.6.15. After the call
findset(11)
the tree in Figure 3.6.3(a) becomes the tree shown in Figure 3.6.3(b).

3.6 / Disjoint Sets 159

>N

6 /4\ 3
8 10 11 4 9 11 3

>

(@) (b)

Figure 3.6.3 Path compression. findset(11) is called on tree (a). Every node
on the path from 11 to the root, except the root itself, becomes a child of
the root, yielding tree (b). o

The fastest known implementation of the disjoint-set algorithms com-
bines path compression and an analog of the height array. The height array
no longer gives the exact heights of the trees because path compression can
reduce the height of the tree. For this reason, we rename the height array
the rank array; rank[i] is an upper bound on the height of the tree rooted
at i. The version of the union algorithm that uses the rank array is called
union by rank. The algorithms follow.

Algorithm 3.6.16 Makeset, Version 3. This algorithm represents the set {i}
as a one-node tree and initializes its rank to 0.

Input Parameter: i
Output Parameters: None

makeset3(i) {
parent[i]l =1
rank[i] = 0

}

Algorithm 3.6.17 Findset, Version 3. This algorithm returns the root of the
tree to which i belongs and makes every node on the path from i to the root,
except the root itself, a child of the root.

Input Parameter: i
Output Parameters: None

findset3(i) {
root =i
while (root = parent[root])
root = parent|[root]

160

Chapter 3 / Data Structures

Jj = parentli]
while (j != root) {
parent[i] = root

i=j
j = parent[i]

}

return root

Algorithm 3.6.18 Mergetrees, Version 3. This algorithm receives as input
the roots of two distinct trees and combines them by making the root of the
tree of smaller rank a child of the other root. If the trees have the same rank,
we arbitrarily make the root of the first tree a child of the other root.

Input Parameters: i, j
Output Parameters: None

mergetrees3(i, j) {

if (rank[i] < rank[j])
parent[i] = j

else if (rank[i] > rank[j])
parent[jl =1

else {
parent[i] = j
rank[j]l = rank[j] +1

}

Algorithm 3.6.19 Union, Version 3. This algorithm receives as input two
arbitrary values i and j and constructs the tree that represents the union of
the sets to which i and j belong. The algorithm assumes that i and j belong
to different sets.

Input Parameters: i, j
Output Parameters: None

union3(i, j) {
mergetrees3(findset3(i), findset3(j))
}

The analysis of the time required by the disjoint-set algorithms using both
path compression and union by rank (Algorithms 3.6.16-3.6.19) is compli-
cated and, through the years, increasingly sharper upper bounds on the time
were obtained. Finally, in 1975, R. E. Tarjan (see Tarjan, 1975) proved that
the worst-case running time is

O(tu(t,n)),

3.6 / Disjoint Sets 161

where 7 is the number of makeset operations, t = m + % is the total number
of operations, and « is a function with an extremely slow rate of growth. For
the o defined by Tarjan, «(t,n) < 4, for all n < 1019728, (Other definitions
of o in the literature differ from Tarjan’s definition by an additive constant.)
Whichever essentially equivalent way « is defined, for all practical values of
n, a(t,n) is bounded by a constant. So, from a practical standpoint (but
not from a theoretical standpoint!), the worst-case time of the disjoint-set
algorithms using both path compression and union by rank is linear in t.

Exercises

1S.

4S.

7S.

In Exercises 1-3, show the trees that result after the following statements
are executed:

fori=1t08
makeset (i)
union(1, 2)
union(3, 4)
union(5, 6)
union(5,7)
union(5, 8)
union(4, 8)
union(3, 2)

Substitute makesetl for makeset and unionl for union.

. Substitute makeset2 for makeset and union2 for union.

Substitute makeset3 for makeset and union3 for union.

What happens if union, version 1, (Algorithm 3.6.8) is erroneously called
with i and j in the same tree?

. What happens if union, version 2, (Algorithm 3.6.12) is erroneously called

with i and j in the same tree?

What happens if union, version 3, (Algorithm 3.6.19) is erroneously called
with i and j in the same tree?

Show that if m < n, after executing Algorithms 3.6.4, 3.6.5, and 3.6.8, the
maximum height of a tree is m.

Show that the worst-case time required by Algorithms 3.6.4, 3.6.5, and
3.6.8 is
Q(n +m - min{m,n}).

Show that the worst-case time required by Algorithms 3.6.9, 3.6.10, and
3.6.12is
Q(n + m - min{lgm,lgn}).

162

Chapter 3 / Data Structures

10S. Write a recursive version of the findset algorithm without path compres-

11.

12,

sion (Algorithm 3.6.5).

Write a recursive version of the findset algorithm with path compression
(Algorithm 3.6.17).

An alternative to path compression is path halving. In path halving, when
the path is traversed from the node to the root, we make the grandparent
of every other node i on the path the new parent of i. Write the path-
halving algorithm. Path compression requires two passes from the node
to the root (one to find the root and one to reset the parents), but path
halving requires only one pass. Tarjan and van Leeuwen (see Tarjan, 1984)
showed that path halving, together with union by rank, also gives worst-
case time O(tx(t,n)).

Notes

Classic books on data structures are Aho, 1983; Knuth, 1997; and Tarjan,
1983. Recent books on data structures and their implementation in pro-
gramming languages are Standish, 1998, and Weiss, 2001.

The heapsort algorithm and the term “heap” were invented by J. W. J.

Williams (see Williams, 1964). Fibonacci heaps (see Fredman, 1987) and
relaxed heaps (see Driscoll, 1988) improve the asymptotic times of binary
heaps.

Chapter Exercises

3.1.

3.2.

3.3.

3.4.

3.5.

Write a version of push for a stack that throws an exception if the array is
full. If the array is not full, the behavior is the same as the original push.
Assume that SIZE specifies the size of the array.

Write a version of pop for a stack that throws an exception if the stack is
empty. If the stack is not empty, the behavior is the same as the original

pop.

Write a version of top for a stack that throws an exception if the stack is
empty. If the stack is not empty, the behavior is the same as the original
top.

Write a version of enqueue for a queue that throws an exception if the
array is full. If the array is not full, the behavior is the same as the original
enqueue.

Write a version of dequeue for a queue that throws an exception if the
queue is empty. If the queue is not empty, the behavior is the same as
the original dequeue.

Chapter Exercises 163

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

3.12.
3.13.

3.14.

Write a version of frontfor a queue that throws an exception if the queueis
empty. If the queue is not empty, the behavior is the same as the original
front.

A deque (pronounced “deck”) is like a queue, except that items may be
added and deleted at the rear or the front.

Implement a deque using an array. Do not incorporate error checking
into your functions.

Implement a deque using an array. Incorporate error checking into your
functions.

Implement a deque using a linked list. Do not incorporate error checking
into your functions.

Implement a deque using a linked list. Incorporate error checking into
your functions.

Let T} be a binary tree with root 7; and let T> be a binary tree with root
7». The binary trees are isomorphic if there is a one-to-one, onto function
f from the vertex set of T; to the vertex set of T, satisfying

« Vertices v; and v; are adjacent in T; if and only if the vertices fvi)
and f(v;) are adjacent in T>.

o f(r) =1

v is aleft child of w in T; if and only if f(v) is a left child of f(w)
in T>.

e v is a right child of w in T; if and only if f(v) is a right child of
f(w) in Tz.

Write an algorithm, which runs in linear time in the worst case, to deter-
mine whether two binary trees are isomorphic. Prove that your algorithm
does run in linear time.

Find input that produces worst-case time for heapsort (Algorithm 3.5.16).

A d-heap is like a binary heap except that the nodes have d children
or less rather than two children or less. Write d-heap versions of sift-
down, delete, insert, and heapify. Also write an algorithm that returns
the largest value in a d-heap. The asymptotic times should be the same
as the binary heap algorithms. Show that your algorithms do have the
same asymptotic times as those for a binary heap. In practice, the 3- or
4-heap algorithms tend to run faster than the binary heap algorithms.

Implement a d-heap (see Exercise 3.13) as an indirect heap. Write versions
of siftdown, delete, insert, and heapify. Also write an algorithm that re-
turns the largest value in an indirect d-heap. The asymptotic times should
be the same as the binary heap algorithms. Show that your algorithms do
have the same asymptotic times as those for a binary heap.

164 Chapter 3 / Data Structures

3.15. Implement the disjoint-set abstract data type by using linked lists to rep-
resent the sets. Make your algorithms as efficient as you can, and provide
sharp asymptotic time bounds.

3.16. Prove a version of Theorem 3.6.14 in which height[i] is replaced by
count[i], where count[i] is the number of nodes in the tree rooted at i.

