7.2 / Kruskal’s Algorithm 275

%x17. Notice that Algorithm 7.1.1 is optimal for the denominations
dy =50, d»=10, d3=5, di=1,

and that
d; divides d;_» — d;_1, 3<i<n.

Show, by giving counterexamples that, nevertheless, the preceding condi-
tion is neither necessary nor sufficient for Algorithm 7.1.1 to be optimal.

18. Given coins of denominations
1=d[1]<d[2] < - - <d[n],

prove or disprove whether the following sets c[i][j] equal to the mini-
mum number of coins needed to make change foranamount j,1 < j < m,
using only the denominations

dal1iy,...,d[il.

fori=0ton
c[i][0] =0
forj=1tom
cl0ljl=0
fori=1ton
forj=1tom
if (d[i] divides j)
clilljl = j/dli]
else
clillj] = min(clillj - 11+ 1,c[i - 11[jD

7.2 Kruskal’s Algorithm

Figure 7.2.1 shows six cities and the costs (in hundreds of thousands of
dollars) of rebuilding roads between them. The road commission has decided

Foxville 4 Steger

2 5

3
Lusk > Springfield

Mystic 2 Del Rio

Figure 7.2.1 Cities and the costs (in hundreds of thousands of dollars) of
rebuilding roads between them.

276

Chapter 7 / Greedy Algorithms

to rebuild enough roads so that each pair of cities will be connected, either
directly or by going through other cities, by rebuilt roads. Figure 7.2.2 shows
one possibility that costs

2+6+1+5+4=18.

The road commission needs an algorithm to find a minimum-cost set of roads
meeting its criterion.

Foxville 4 Steger

-— 4

5

b Springfield
Lusk

Mystic 2 Del Rio

Figure 7.2.2 A subset of the roads of Figure 7.2.1. If these roads are rebuilt,
each pair of cities will be connected, either directly or by going through other
cities, by rebuilt roads. The cost of rebuilding these roads is 18.

Roads, cities, and costs can be modeled as a weighted graph where the
vertices represent the cities, the edges represent the roads, and the weights
represent the costs (see Figure 7.2.3). A spanning tree for a graph G is a
subgraph of G that is a tree containing all of G’s vertices. A minimal span-
ning tree is a spanning tree of minimum weight. Every connected graph has
a spanning tree and, therefore, a minimal spanning tree. Thus, the problem
of finding a minimum-cost set of roads directly or indirectly connecting all
of the cities is the problem of finding a minimal spanning tree.

1 4 2 1 4 2

 ——
2 5 2
3/3 1 4 3/30 Y .4
6 3 6
5 2 6
G T

Figure 7.2.3 The graph G of Figure 7.2.1 with integers replacing the city
names and a spanning tree T. No other spanning tree has a smaller weight,
so T is a minimal spanning tree.

‘ 4‘\\0\

Example 7.2.1. In Figure 7.2.3, the weight of the spanning tree T for the
graph G is 12. No other spanning tree for G has weight less than 12. [The
only set of five edges whose weights sum to less than 12 is

{(3,4),(5,6),(1,3),(3,6),(1,5)},
! > 73 3.

7.2 / Kruskal's Algorithm 277

1 2 1 2
[] [) [
L_
S ' .4 3 L 4
[] »r—
6 5 2 6

(a)

(d) (e)

Figure 7.2.4 Kruskal’s algorithm with input the graph G of Figure 7.2.3. The algorithm
begins with all of the vertices and no edges. It then repeatedly adds an edge of minimum
weight that does not make a cycle. In this case, it first selects edge (3,4) since it has
minimum weight [graph (a)]. It next selects an edge of minimum weight 2; we assume
that it selects edge (1,3) [graph (b)]. It next selects edge (5,6) since it has minimum
weight [graph (c)]. It next selects an edge of minimum weight 3; we assume that it
selects edge (1, 5) [graph (d)]. Finally, it selects edge (1, 2) since it has minimum weight
[graph{e)] to complete the minimal spanning tree.

but these edges do not form a tree.] Thus, T is a minimal spanning tree.
Since G models the road system of Figure 7.2.1, the minimal spanning tree

T is a solution to the problem of finding a minimum-cost subset of roads di-

rectly or indirectly connecting all of the cities. o

In this section and the next, we discuss the problem of finding a minimal
spanning tree in a connected, weighted graph. Unless specified otherwise, all
of the weights are assumed to be positive. Kruskal’s algorithm is a greedy
algorithm for finding a minimal spanning tree in a graph G. The algorithm
begins with all of the vertices of G and no edges. It then applies the greedy
rule: Add an edge of minimum weight that does not make a cycle.

Example 7.2.2. We show how Kruskal’s algorithm finds a minimal spanning
tree for the graph G in Figure 7.2.3. Kruskal’s algorithm first selects edge
(3,4) since it has minimum weight [see Figure 7.2.4(a)].

Kruskal's algorithm next selects edge (1, 3) or (5, 6); either edge has min-
imum weight 2 and neither makes a cycle when added to {(3,4)}. When

278

Chapter 7 / Greedy Algorithms

more than one edge has the same minimum weight, any can be selected. Dif-
ferent spanning trees may result, but all will be minimal. Suppose that we
arbitrarily select edge (1, 3) [see Figure 7.2.4(b)].
Kruskal’s algorithm next selects edge (5, 6) since it has minimum weight 2
and does not make a cycle when added to {(3,4), (1, 3)} [see Figure 7.2.4(c)].
Kruskal’s algorithm next selects edge (1, 5) or (3, 6); both have minimum
weight 3 and neither makes a cycle when added to

{(3,4),(1,3),(5,6)}

Suppose that we arbitrarily select edge (1,5) [see Figure 7.2.4(d)].
Kruskal’s algorithm next considers selecting edge (3, 6), which has mini-
mum weight 3. Since (3, 6) makes a cycle when added to

{(3,4),(L,3),(5,6),(1,5)}

it does not select (3, 6).
Finally, Kruskal’s algorithm selects edge (1,2) because it has minimum
weight 4 and does not make a cycle when added to

{(3,4),(1,3),(5,6),(1,5)}

[see Figure 7.2.4(e)].
Since we now have a spanning tree, Kruskal’s algorithm terminates with
the minimal spanning tree shown in Figure 7.2.4(e). m|

To implement Kruskal’s algorithm, several issues need to be addressed.
First, we must represent the graph. Since we are selecting edges by weight,
we represent the graph as a list of edges and their weights. Second, we must
select the edges in nondecreasing order of weight. We can sort the edges
in nondecreasing order by weight and then examine them in sorted order.
Third, we must be able to determine whether adding an edge would create
a cycle. We observe that adding edge (v, w) creates a cycle when there is
a path between v and w formed by edges already selected, that is, when
v and w are in the same component (see Definition 2.5.25) of the graph of
edges already selected. We keep track of components by recording the set
of vertices belonging to each component.

Example 7.2.3. Consider the graph G of Figure 7.2.3. Its representation is
(1,2,4)(1,3,2)(1,5,3)(2,4,5) (3,4,1) (3,5,6) (3,6,3) (4,6,6) (5,6,2),

where (v1, v, w) is interpreted as edge (v1,v2) of weight w.
We first sort the edges in nondecreasing order by weight:

(3,4,1) (1,3,2)(5,6,2) (1,5,3) (3,6,3) (1,2,4) (2,4,5) (3,5,6) (4,6,6).

When Kruskal’s algorithm starts, no edges have been selected, so each
vertex belongs to a component consisting of itself:

{1} {2} {3} {4} {5} {6}

7.2 / Kruskal’s Algorithm 279

The first edge (3, 4) is selected, and the components to which vertices 3 and
4 belong are merged; the components become

{1} {2} {3,4} {5} {6}.

Next edge (1, 3) is selected, and the components to which vertices 1 and 3
belong are merged; the components become

{1,3,4} {2} {5} {e}.

Next edge (5, 6) is selected, and the components to which vertices 5 and 6
belong are merged; the components become

11,3,4} {2} {5,6}.

Next edge (1,5) is selected, and the components to which vertices 1 and 5
belong are merged; the components become

{1,3,4,5,6} {2}.

Next edge (3, 6) is examined but rejected because its vertices belong to the
same component {1, 3,4, 5, 6}. Finally, edge (1, 2) is selected, and the compo-
nents to which vertices 1 and 2 belong are merged; the components become

{1,2,3,4,5,6},

and Kruskal's algorithm terminates. m|

The algorithms to manage disjoint sets (see Section 3.6) can be used to
handle the components. Algorithm makeset can be used to initialize each
vertex to its own component;

findset(v) == findset(w)

can be used to test whether vertices v and w belong to the same component;
and union(v,w) can be used to merge the components to which vertices v
and w belong. Algorithm 7.2.4 formally states Kruskal’s algorithm.

Algorithm 7.2.4 Kruskal’s Algorithm. Kruskal’s algorithm finds a minimal
spanning tree in a connected, weighted graph with vertex set {1,...,n}. The

. input to the algorithm is edgelist, an array of edge, and n. The members of
edge are

¢ v and w, the vertices on which the edge is incident.
o weight, the weight of the edge.

The output lists the edges in a minimal spanning tree. The function sort
sorts the array edgelist in nondecreasing order of weight.

Input Parameters: edgelist,n
Output Parameters: None

280

Chapter 7 / Greedy Algorithms

kruskal(edgelist,n) {
sort (edgelist)
fori=1ton
makeset (i)
count = 0
i=1
while (count < n - 1) {
if (findset(edgelist[i].v) = findset(edgelist[i]l.w)) {
printin(edgelist[i].v + “” + edgelist[i].w)
count = count + 1
union(edgelist[i].v, edgelist[i]l.w)
}
i=i+1
}
}

After Kruskal's algorithm adds » — 1 edges, an acyclic, (n — 1)-edge sub-
graph of the original n-vertex graph is obtained. By Theorem 2.6.5, the sub-
graph is a tree and, therefore, a spanning tree.

There are n makeset operations, at most 2m findset operations, and n —1
union operations. Because the graph input to Kruskal’s algorithm is con-
nected, m > n — 1. Thus the number of union and findset operations is
O(m). Using union by rank alone, or union by rank and path compression,
these operations take time O(mlgm) (see Section 3.6). In the worst case,
comparison-based sorting takes time ©(mlgm). Thus the worst-case time
of Algorithm 7.2.4 is ©(mlgm).

In Section 7.1, we noted that greedy algorithms may or may not be op-
timal. Fortunately, Kruskal's algorithm is optimal. We deduce this from a
slightly stronger result. -

Theorem 7.2.5. Let G be a connected, weighted graph, and let G’ be a sub-
graph of a minimal spanning tree of G. Let C be a component of G’, and let
S be the set of all edges with one vertex in C and the other not in C. If we add
a minimum weight edge in S to G', the resulting graph is also contained in a
minimal spanning tree of G.

Before proving Theorem 7.2.5, we show how it implies the correctness of
Kruskal’s algorithm (Algorithm 7.2.4).

Theorem 7.2.6 Correctness of Kruskal's Algorithm. Kruskal’s algorithm
(Algorithm 7.2.4) is correct; that is, it finds a minimal spanning tree.

Proof. We use induction to show that at each iteration of Kruskal’s algo-
rithm, the subgraph constructed is contained in a minimal spanning tree. It
then follows that, at the termination of Kruskal's algorithm, the subgraph
constructed is a minimal spanning tree.

When we begin, the subgraph, which consists of no edges, is contained in
every minimal spanning tree. Thus the basis step is true.

7.2 / Kruskal’s Algorithm 281

Turning to the inductive step, let G’ denote the subgraph constructed by
Kruskal’s algorithm prior to another iteration of the algorithm. The inductive
assumption is that G’ is contained in a minimal spanning tree. Let (v,w) be
the next edge selected by Kruskal’s algorithm, and let C be the component
of G’ to which v belongs. Edge (v, w) is a minimum weight edge with one
vertex in C and one not in C because it is a minimum weight edge from any
component to any other. Therefore, by Theorem 7.2.5, when (v, w) is added
to G’, the resulting graph is also contained in a minimal spanning tree. The
inductive step is complete and the theorem is proved. [|

We conclude by proving Theorem 7.2.5.

Proof of Theorem 7.2.5. Let G be a connected, weighted graph, and let G’
be a subgraph of G that is contained in a minimal spanning tree T of G. Let
C be a component of G, and let (v, w) be a minimum weight edge with v in
C and w not in C. We must show that the graph obtained by adding (v, w)
to G’ is contained in a minimal spanning tree of G.

If T also contains (v, w), the proof is complete; so, suppose that T does
not contain (v,w). If we add the edge (v,w) to T and remove an edge
from the cycle S created by adding (v, w), the resulting subgraph T’ is also
a spanning tree. We choose the edge to remove as follows.

Let w' be the first vertex on S, going from v to w, thatis notin C, and let
v’ be the vertex on S just before w' (v’ is in C) (see Figure 7.2.5). Add (v, w)
to T and remove (v’,w’) from T to obtain T'. Since (v, w) is a minimum
weight edge with one vertex in C and the other not in C,

weight(v',w') = weight(v,w).
Therefore
weight(T) = weight(T").

Since T is a minimal spanning tree, we must have

weight(T) = weight(T").

C

Figure 7.2.5 The proof of Theorem 7.2.5. Vertex w’ is the first vertex on
cycle S, going from v to w, that is not in C. Vertex v’ is the vertex on S
just before w’, The spanning tree T is modified by adding edge (v,w) and
removing edge (v’,w’). The tree T’ obtained is also a minimal spanning
tree.

282 Chapter 7 / Greedy Algorithms

Therefore T’ is a minimal spanning tree. Since T’ contains all of the edges
of G’ as well as (v, w), the proof is complete. [|

Exercises

Trace Kruskal’s algorithm for each graph in Exercises 1-3.

4 3
2 6
10 9 5
5
4 4 3 6
4 6 2 6 6
; 8§ 8 8 o
3 3 5 N 4
10 5 11 2 12
3.
1 5 2 7 3 10 4
1
7 14 2 6 6 4
6
5 8
4 8 7 7
4 6 4 1
1
4 11
9 10 1 12
6
7 ;8 13 2
13 14 9 15 5 16

4S. What is the worst-case time (in terms of n) of Kruskal's algorithm when
the input is the complete graph on n vertices?

7.2 / Kruskal’s Algorithm 283

5.

7S.

10S.

11S.

12.

13.

In Kruskal's algorithm, sorting all of the edges will be more work than
necessary if not all of the edges are examined for possible inclusion in
the minimal spanning tree; so, suppose that instead of sorting the edges,
we place them in a binary minheap and remove them from the minheap as
needed. Analyze the worst-case time of this implementation of Kruskal’s
algorithm in terms of the number of edges, the number of vertices, and the
number of edges examined for possible inclusion in a minimal spanning
tree.

Consider a possible divide-and-conquer approach to finding a minimal
spanning tree in a connected, weighted graph G. Suppose that we divide
the vertices of G into two disjoint subsets Vi and V>. We then find a
minimal spanning tree T; for V; and a minimal spanning tree T for V>.
Finally, we find a minimum weight edge e connecting T; and T>. We then
let T be the graph obtained by combining T;, T, and e.

(@) Is T always a spanning tree?
(b) If T is a spanning tree, is it always a minimal spanning tree?

Let T be a minimal spanning tree for a graph G, let e be an edge in T,
and let T’ be T with e removed. Show that e is a minimum weight edge
between components of T'.

. Let G be a connected, weighted graph, let v be a vertex in G, and let e be

an edge of minimum weight incident on v. Show that e is contained in
some minimal spanning tree.

. Let G be a connected, weighted graph, and let v be a vertex in G. Suppose

that the weights of the edges incident on v are distinct. Let e be the
edge of minimum weight incident on v. Show that e is contained in every
minimal spanning tree.

Let T and T’ be two spanning trees of a connected graph G. Suppose that
an edge e is in T but notin T'. Show that there is an edge ¢’ in T’, but not
in T, such that (T — {e}) U {e'} and (T’ — {€’}) U {e} are spanning trees
of G.

In Exercises 11-13, tell whether the statement is true or false. If the state-
ment is true, prove it; otherwise, give a counterexample. In each exercise,
G is a connected, weighted graph.

If all of the weights in G are distinct, distinct spanning trees of G have
distinct weights.

If all of the weights in G are distinct, G has a unique minimal spanning
tree.

If e is an edge in G whose weight is less than the weight of every other
edge, ¢ is in every minimal spanning tree of G.

