
1

A Review of C language

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

Modified from www.cse.cuhk.edu.hk/~csc2520/tuto/csc2520_tuto01.ppt

2

Contents
C Development Environment
Basic Procedural Programming Concepts
Functions
Pointers and Arrays
Strings
Basic I/O
Memory Allocation
File Operation
Reading the Command Line

3

Visual C++ 6.0

4

Visual C++ 6.0

5

Visual C++ 6.0

6

Visual C++ 6.0

7

Visual C++ 6.0

8

Visual C++ 6.0

9

Visual C++ 6.0

10

Visual C++ 6.0

11

Visual C++ 6.0

12

Visual C++ 6.0

Double click

13

Visual C++ 6.0

14

Visual C++ 6.0
Compile a single source file

Warning and error
messages if any

15

Visual C++ 6.0
Build the whole project

First compile then
link

16

Visual C++ 6.0
Execute

.exe file is located in the “Debug” directory in debug configuration

.exe file is located in the “Release” directory in release configuration

17

Visual C++ Command-Line Compiler
Download at:

http://msdn.microsoft.com/visualc/vctoolkit2003/

Install the toolkit

Configure environment:
Set PATH=<the toolkit directory>\bin;%PATH%

Set INCLUDE=<the toolkit directory>\include;%INCLUDE%

Set LIB=<the toolkit directory>\lib;%LIB%

18

Visual C++ Command-Line Compiler
Compile and Build
> cl foo.c
or
> cl foo1.c foo2.c –OUT:foo.exe

Compile
> cl –c foo.c

Link
> link foo1.obj foo2.obj –OUT:foo.exe

19

Contents
C Development Environment
Basic Procedural Programming Concepts
Functions
Pointers and Arrays
Strings
Basic I/O
Memory Allocation
File Operation
Reading the Command Line

20

Basic Programming Concepts
Controlling the CPU+Memory+I/O to obtain your
computational goals

Memory: provides storages for your data
Constants: 1, 2, 'A', "a string"

Variables: int count;

CPU: provides operations to data
Data movement: count = 1;

Arithmetic or Boolean expressions: 2 * 4

Testing and control flow: if statement, for loop, while
loop, function

I/O: FILE, stdin, stdout, printf(), scanf(), getc(), …

21

Programming Concepts (cont’d)
Procedural programming basics

Step 1: represent your data in terms of variables
basic types: char, int, float, double
user defined types: struct…link lists, trees,…

(Here are what you learned in Data Structure)

Step 2: figure out how to transform the original
data to the desired result that you want to see
with the primitive operations a computer
provides: ex. search, sort, arithmetic or
logic computations,…

(Here is what you learned in Algorithm) 22

Programming Concepts (cont’d)
Additional Requirements

Structural Programming: if statement, switch-case
statement, iteration structure, function, block …
(forbidden commands: goto, break…)

Modularization: function and file

Functional testing / Unit testing: assertion, unit
testing routines, functional testing routines

23

Contents
C Development Environment
Basic Procedural Programming Concepts
Functions
Pointers and Arrays
Strings
Basic I/O
Memory Allocation
File Operation
Reading the Command Line

24

Function Basic
A simple function compute the value of valpow

25

Function Definition
The first line of the
function, contains:

Return data type

Function name

Parameter list, for each
Parameter, contains:

Parameter data type

Parameter name

26

Function Body
Function Body is bounded by a set of curly brackets
Function terminates when:

“return” statement is reached or
the final closing curly bracket is reached.

Function returns value by:
“return(ret_val);” statement, the ret_val must be of the same type
in function definition;
Return automatically when reaching the final closing curly
bracket , the return value is meaningless.

27

Function Declaration & Function Call
Function can be called only after it is declared, a
simple skeletal program:

Semicolon

28

Function Call
Function can be called at any part of the program
after the declaration:

The return value of a function can be assigned to a
variable of the same type.

Example: result = power(2, 5);
Compute the value of 25 =32 and assign the value to the
variable “result”, equals to “result=32”.

29

Function Parameter
C is “called by value”

The function receives
copies of values of the
parameters

Example:
Print “a=10” and
“x=314.159” x is changed

a will not
change

30

Function Variable Scope

Limited in the
function

Created each time
when called

Example,
pi: whole program

result, a: main

x,y: circlearea

Global
variable

Local
variable

Local
variable

31

Contents
C Development Environment
Basic Procedural Programming Concepts
Functions
Pointers and Arrays
Strings
Basic I/O
Memory Allocation
File Operation
Reading the Command Line

32

Basic Pointer Operations
Declaration: with asterisk *.

int *ip; (declare a variable of integer address type)

Generation: with “address-of” operator &.

int i = 5; ip = &i; (ip points to the address of i)

Retrieve the value pointed to by a pointer using the
“contents-of” (or “dereference”) operator, *.

printf("%d\n", *ip); (equals to “printf("%d\n", i); ”)

*ip=10; (equals to “i=10”)

33

Pointers and Arrays
Pointers do not have to point to single variables.
They can also point at the cells of an array.

int *ip; int a[10]; ip = &a[3];

An array is actually a pointer to the 0-th element of
the array

int *ip; int a[10]; ip = a; (equals to “ip = &a[0]”)

a[5]=10; is equivalent to *(a+5)=10;

Pointers can be manipulated by “+” and “-”.
int *ip; int a[10]; ip = &a[3];

The pointer “ip-1” points to a[2] and “ip+3” points to
a[6];

34

Pointers and Arrays: Example

35

Additional Information
Pointer is a variable too, the content of a pointer is
the address of the memory.

Pointers can also form arrays, and there can be a
pointer of pointer.
int * pt[10];

int ** ppt; (viewed as int * * ppt;)

ppt = &pt[0] (or ppt = pt);

36

Contents
C Development Environment
Basic Procedural Programming Concepts
Functions
Pointers and Arrays
Strings
Basic I/O
Memory Allocation
File Operation
Reading the Command Line

37

String basic
Strings in C are represented by arrays of characters.
The end of the string is marked with the null
character, which is simply the character with the
value 0. (Also denoted as '\0');
The string literals:

char string[] = "Hello, world!";
we can leave out the dimension of the array, the
compiler can compute it for us based on the size of the
initializer (including the terminating \0).

Note:
char string[]; is illegal
string = "Hello, world!"; is illegal

38

String handling
Standard library <string.h>
For details, please refer to manual: such as MSDN

Find character in string strchr,strrchr

Append string strcat,strncat

Find substring strstr

Return string length strlen

Compare stringstrcmp, strncmp

Copy string strcpy,strncpy

39

A Review of C Language
C Development Environment
Functions
Pointers and Arrays
Strings
Basic I/O
Memory Allocation
File Operation
Reading the Command Line

40

Contents
C Development Environment
Basic Procedural Programming Concepts
Functions
Pointers and Arrays
Strings
Basic I/O
Memory Allocation
File Operation
Reading the Command Line

41

Char I/O
“getchar”: getchar
returns the next
character of keyboard
input as an int.
“putchar”: putchar puts
its character argument
on the standard output
(usually the screen).

42

String I/O
“printf”: Generates output under the control of a
format string

“scanf”: Allows formatted reading of data from the
keyboard.

43

Format Specification
Basic format specifiers for printf and scanf:

%d print an int argument in decimal

%ld print a long int argument in decimal

%c print a character

%s print a string

%f print a float or double argument

%o print an int argument in octal (base 8)

%x print an int argument in hexadecimal (base 16)

44

Contents
C Development Environment
Basic Procedural Programming Concepts
Functions
Pointers and Arrays
Strings
Basic I/O
Memory Allocation
File Operation
Reading the Command Line

45

Allocating Memory with “malloc”
Is declared in <stdlib.h>

void *malloc(size_t size);

Returns a pointer to n bytes of memory
char *line = (char *)malloc(100);

Can be of any type;
Assume “date” is a complex structure;
struct date *today =

(struct date *)malloc(sizeof(struct date));

Return null if failed

46

Freeing Memory
Memory allocated with malloc lasts as long as you
want it to.

It does not automatically disappear when a
function returns, but remain for the entire duration
of your program.

Dynamically allocated memory is deallocated with
the free function.

free(line); free(today);

fail if the pointer is null or invalid value

47

Reallocating Memory Blocks
Reallocate memory to a pointer which has been
allocated memory before (maybe by malloc)

void *realloc(void *memblock, size_t size);

today_and_tomorrow = realloc(today, 2*sizeof(date));

48

Contents
C Development Environment
Basic Procedural Programming Concepts
Functions
Pointers and Arrays
Strings
Basic I/O
Memory Allocation
File Operation
Reading the Command Line

49

File Pointers
C communicates with files using a extended data
type called a file pointer.

FILE *output_file;

Common file descriptors:
“stdin”: The standard input. The keyboard or a
redirected input file.

“stdout”: The standard output. The screen or a
redirected output file.

“stderr”: The standard error. The screen or a redirected
output file.

50

Open and Close
Using fopen function, which opens a file (if exist)
and returned a file pointer

fopen("output_file", "w");

Using fclose function, which disconnect a file
pointer from a file
Access character:

“r”: open for reading;
“w”: open for writing;
“a”: open for appending.

51

File I/O

Put a string into a filefputs

Get a string from a filefgets

Take data from a string of a file.fscanf

Put formatted string into a file.fprintf

Get a character from a filegetchar, getc

Put a character to a fileputchar, putc

Standard library <stdio.h>
For details, please refer to manual: such as
MSDN

52

Contents
C Development Environment
Basic Procedural Programming Concepts
Functions
Pointers and Arrays
Strings
Basic I/O
Memory Allocation
File Operation
Reading the Command Line

53

Input From the Command Line
C's model of the command line of a sequence of
words, typically separated by whitespace.
A program with command arguments:

int main(int argc, char *argv[]) { ... }
“argc” is a count of the number of command-line
arguments.
“argv” is an array (“vector”) of the arguments
themselves.

Ex.
sort file1 file2 file3

54

Example

argc = 3

argv[0] = “add”

argv[1] = “4”

argv[2] = “5”

