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Visual C++ Command-Line Compiler

< Download at:
* http://msdn.microsoft.com/visualc/vctoolkit2003/

< Install the toolkit

< Configure environment:
* Set PATH=<the toolkit directory>\bin;%PATH%
* Set INCLUDE=<the toolkit directory>\include;%INCLUDE%
* Set LIB=<the toolkit directory>\lib;%LI1B%
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Visual C++ Command-Line Compiler

< Compile and Build
> cl foo.c
or
> cl fool.c foo2.c —OUT:foo.exe

< Compile
> cl —c foo.c

< Link
> link fool.obj foo2.0bj —OUT:foo.exe

Basic Programming Concepts

<+ Controlling the CPU+Memory+1/O to obtain your
computational goals

<~ Memory: provides storages for your data
x Constants: 1, 2,'A’, "astring"
* Variables: int count;

< CPU: provides operations to data
* Data movement: count = 1;
* Arithmetic or Boolean expressions: 2 * 4

* Testing and control flow: if statement, for loop, while
loop, function

< 1/0: FILE, stdin, stdout, printf(), scanf(), getc(), ...




Programming Concepts (cont’d)

Procedural programming basics

<+ Step 1: represent your data in terms of variables
basic types: char, int, float, double
user defined types: struct...link lists, trees,...

(Here are what you learned in Data Structure)

< Step 2: figure out how to transform the original
data to the desired result that you want to see
with the primitive operations a computer
provides: ex. search, sort, arithmetic or
logic computations,...

(Here is what you learned in Algorithm).
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Programming Concepts (cont’d)

< Additional Requirements

x Structural Programming: if statement, switch-case
statement, iteration structure, function, block ...
(forbidden commands: goto, break...)

* Modularization: function and file

* Functional testing / Unit testing: assertion, unit
testing routines, functional testing routines

Function Basic

< A simple function compute the value of

| Function | .
( double power(double val, unsigned pow)

double ret_val = 1.0;
unsigned i;

} ret_val *= val;
e ) h _ return(ret_val);




Function Definition

% The first line of the
function, contains:
* Return data type .-
* Function name ~
* Parameter list, for each |
|

double power(double val, unsigned pow)

Return type: double

. Function name: power
Parameter, contains:

= Parameter data type
« Parameter name

Parameter type: double and unsigned

‘ Parameter list; double val, unsignad pow

Function Declaration & Function Call

< Function can be called only after it is declared, a
simple skeletal program:

(| Decaration | } double power({double val, usigned pow):
void main()
{

double a=2, result; Semicolon
r - unsigned b=5;
| | Function Call [. result=power(a,b);
[| Definitien | | double power{doubla val, usigned pow)
\ .. {

Function Body

< Function Body is bounded by a set of curly brackets

% Function terminates when:

x “return” statement is reached or

= the final closing curly bracket is reached.
< Function returns value by:

* “return(ret_val);” statement, the ret_val must be of the same type
in function definition;

* Return automatically when reaching the final closing curly
bracket , the return value is meaningless.

Function Call

<+ Function can be called at any part of the program
after the declaration:

* The return value of a function can be assigned to a
variable of the same type.
* Example: result = power(2, 5);

« Compute the value of 25 =32 and assign the value to the
variable “result”, equals to “result=32".




Function Parameter

+ C is “called by value” : :
float circlearea(int x);

* The function receives float pi=3.14159;
void main()

copies of values of the  }

parameters float result, a=10;
result=circlearea(a);

* Example: printf( “a=%d” ,a);
@ Print “a=10" and ;Ioat circlearea(int x)
“x=314.159”
float y;
y = pi*x*x; x=y;
printf( “x=%d” ,x);
return y;
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Function Variable Scope

float circlearea(int x);

< Limited in the float pi=3.14159;
void main()

function {
float result, a=10;

+ Created each time resultRclrclparental:
when called printf( “a=%d” ,a);
<+ Example,
* pi: whole program e
* result, a: main printf( “x=%d” ,x);
. return y;
* X,Y: circlearea

}

float circlearea(int x)

Basic Pointer Operations

< Declaration: with asterisk *,
* Int *ip; (declare a variable of integer address type)

< Generation: with “address-of” operator &.
*Int i =5; ip = &i; (ip points to the address of i)
< Retrieve the value pointed to by a pointer using the
“contents-of” (or “dereference”) operator, *.
* printf("%d\n", *ip); (equals to “printf("%d\n", i); )
* *ip=10; (equals to “i=10")




Pointers and Arrays Pointers and Arrays: Example

<+ Pointers do not have to point to single variables.
They can also point at the cells of an array.

* Int *ip; int a[10]; ip = &a[3]; oy
short j;
< An array is actually a pointer to the 0-th element of short table(8];

short *ptr;

the array for (j =05 j<=T; j++)
* Int *ip; int a[10]; ip = a; (equals to “ip = &a[0]”) pu;a-h:;l:ﬂn_ul[gl;ﬂ ”

x a[5]=10; is equivalent to *(a+5)=10; —
<+ Pointers can be manipulated by “+” and “-”.
* Int *ip; int a[10]; ip = &a[3];
x The pointer “ip-1” points to a[2] and “ip+3” points to
a[6];

Mote; the size of short is 2
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String basic

<+ Strings in C are represented by arrays of characters.

<+ The end of the string is marked with the null
character, which is simply the character with the
value 0. (Also denoted as "\0";

<+ The string literals:
* char string[] = "Hello, world!";

* We can leave out the dimension of the array, the
compiler can compute it for us based on the size of the
initializer (including the terminating \0).

Note:
char string[]; is illegal
string = "Hello, world!"; is illegal

A Review of C Language
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<+ Standard library

String handling

<string.h>

<+ For details, please refer to manual: such as MSDN

strcat,strncat

Append string

strchr,strrchr

Find character in string

strcpy,strncpy

Copy string

strcmp, strncmp

Compare string

strlen

Return string length

strstr

Find substring
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Char 1/0

< “getchar”: getchar
returns the next
character of keyboard Hinclude <ctypa h>
input as an int. I* For definition of toupper *

“ ” #include =stdio.h>
< “putchar”: putchar puts el |
its character argument I* For definition of getchar, putchar, EOF */

on the standard output ;"F::?{(lh

(usually the screen). while((ch = getchar()) = EOF)
putchar(toupper(ch)),

Format Specification

<+ Basic format specifiers for printf and scanf:
* %d print an int argument in decimal
* %ld print a long int argument in decimal
* %C print a character
* %s print a string
* %f print a float or double argument
* %0 print an int argument in octal (base 8)
* %x print an int argument in hexadecimal (base 16)

String 1/0

< “printf”; Generates output under the control of a
format string

+ “scanf”: Allows formatted reading of data from the
keyboard.
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Allocating Memory with “malloc”

<+ Is declared in <stdlib.h>
* void *malloc( size tsize);

< Returns a pointer to n bytes of memory
* char *line = (char *)malloc(100);

<+ Can be of any type;
* Assume “date” is a complex structure;

x struct date *today =
(struct date *)malloc(sizeof(struct date));

< Return null if failed

Reallocating Memory Blocks

<+ Reallocate memory to a pointer which has been
allocated memory before (maybe by malloc)
* void *realloc( void *memblock, size_t size );
* today_and_tomorrow = realloc(today, 2*sizeof(date));

Freeing Memory

<+ Memory allocated with malloc lasts as long as you
want it to.

<+ It does not automatically disappear when a
function returns, but remain for the entire duration
of your program.

<+ Dynamically allocated memory is deallocated with
the free function.
x free(line); free(today);
x fail if the pointer is null or invalid value
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File Pointers

< C communicates with files using a extended data
type called a file pointer.
x FILE *output_file;
<+ Common file descriptors:

* “stdin”: The standard input. The keyboard or a
redirected input file.

x “stdout”: The standard output. The screen or a
redirected output file.

* “stderr”: The standard error. The screen or a redirected
output file.

File 1/0

<+ Standard library <stdio.h>

< For details, please refer to manual: such as
MSDN

putchar, putc  |Put a character to a file

getchar, getc | Get a character from a file
fprintf Put formatted string into a file.
fscanf Take data from a string of a file.
fputs Put a string into a file

fgets Get a string from a file

Open and Close

<+ Using fopen function, which opens a file (if exist)
and returned a file pointer

* fopen("output_file", "w");
< Using fclose function, which disconnect a file
pointer from a file

< Access character:
* “r”: open for reading;
* “W’”: open for writing;
* “a”: open for appending.
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Input From the Command Line

< C's model of the command line of a sequence of
words, typically separated by whitespace.
< A program with command arguments:
* int main(int argc, char *argv[]) { ... }
* “argc” is a count of the number of command-line

arguments.

x “argv” is an array (“vector”) of the arguments
themselves.

Ex.
sort filel file2 file3

int a = atoi(argv[1]);

int b = atoi(argv[2]);

int sum=a+b;

printf("%s + %s = %d\n",argv[1],argv[2],5um)};

argc =3
argv[0] = “add”
argv[l] = "4”
argv[2] = 5"




