A Review of C language

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

Modified from www.cse.cuhk.edu.hk/~csc2520/tuto/csc2520_tuto01.ppt

Visual C++ 6.0

#2Microsoft Visual C++

Contents

< C Development Environment

< Basic Procedural Programming Concepts
< Functions

< Pointers and Arrays

<+ Strings

<+ Basic 1/0

< Memory Allocation

<+ File Operation

+ Reading the Command Line

Visual C++ 6.0

Files Projects | Workspaces | Other Documents

LZATL COM AppWizard Project name:

[l Cluster Resource Type Wizard exam|

1] Custom AppWizard ple\

3 Database Project Location:

= DevStudio Add-in Wizard = -

£15API Extension Wizard clexample J

Makefile

85 MF C ActiveX ControlWizard

[# MFC AppWizard (dll)

FAMFC Appwizard (exe) & Create new workspace

Ti Utility Project

ZIWin32 Application
Win32 Console Application H Lspsndeny ot

= Win32 Dynamic-Link Library v

€1 Addio currentworkspace;

Platforms:

“\Win32

CK I Cancel
L] L] L]

Visual C++ 6.0 Visual C++ 6.0

What kind of Console Application do you Win32 Console Application will create a new skeleton project with the following
want to create? specifications:

+ Empty console application.
+ No files will be created or added to the project.

A siiipie appiication.
© A"Hello, World!" application.
 An application that supports MFC.

Project Directory:
ciexample

Next > | | FEinish | Cancel

Visual C++ 6.0

Bl examp Crosol : ++

||Eile Edit Wiew Insert Broject Build Tools Window Help

& ey wno- - | mEE S poc

[tgienats) =10 global memF[iNo members - Cre
FE]

i example classes

ubArerosoitasual C++
File Edit ¥iew Ingert Lroject Build Teols Winds
o m(ER

H = Open... Clrl+C

I Eloge
Open Workspace...

Sane Yilonkepace
Close Wil W

mmaa
| Saye [Files | Frojects | Worksy | other b t
Bave .. Active Server Page F Add to project:
@ Save Al = Binary File
[ERE— Bitmap File [example =l
Page Beflin.., | B Aeageriie
=2l | [Eucursor File e
2 S HTML Page —
Recent Files Mo File [exte
Recent Work: |73 Macro File
S — Resource Script Logation:
Exit F Resource Template [crexample J
[5L Seript Flle
[Text File

Visual C++ 6.0 Visual C++ 6.0

||Eile Edit View Insert Broject Build Tools Window Help
5 ' ' ' @z aalbel=- 2 mE
ile Edit ct Build Tools Window Help | (Globals) | (4 global mem&{(No members - Creatd
2ZE0 me (o m/ER |Smpdc s z
(Globals) = || (All global mem v || # main R - |[sm e
i ™ #include <stdio.h>

Workspace 'example’: 1 project(s)
=& example files

& Workspace ‘example: 1 project(s)
= & example files

int maing)

3 Source Files printf("Hello World*in");

return 0;
i

21 Header Files
~(1 Resource Files

Visual C++ 6.0

”[cil 5) =i global mem #[#main
izl

e[S g e

{8 Workspace ‘example”: | proj

Workspace ‘example”. 1 project(s)
= @ example files

= example files
=43 Source Files
(3 Header Files
-1 Resource Files

1o Project

RO
Debug

| Sy example
1 Header Files

1 Resource Flles

Project file Cexampleex].c does not exist.
Do you want to create a new file?

—

e SpeC 1 not exist.
e T T e e et Do you want to add a reference to the project anyway?
WMEMR@: [Crr Files (oxc

[mo | ®w | I

[Files will be inserted int:

Visual C++ 6.0 Visual C++ 6.0

< Compile a single source file

File Edit Wiew Ingert Project Build Tools Window Help _ /@ @0 me ax - @R Rmeoc

2 o - . . [igtobats) —— x](a0 global men =][#main
Q| sEHE | me 2 - DEE|HmpdC =i m| ile .E.:n Miew Insert EfOlegu Tools Window % . g e
BETT R - = | o o
(Globals) = |[(All global mem |[#main A e P it | RN | —
g |[(Globalsy = [global men R

= 23 Source Files o
S| #tinclude <{stdio.h> = .|| virc. &4 Reuild A

Hexl.c|
1 Header Files

. 03 Workspace ‘example’:| | i4 . Batch Build... e hles
Workspace 'example’: 1 project(s) int main() = & example files H o QR i

=& example files {

= Source Files !

R) printf("Hello World*in"); - . Statt Dehiig 5
E@ Source Files return 8: =1 Header Files Debugger Remote Copnection...

Res Fil
exl.c A = Hesource Hes ! Execute examplecxe Cul+FS

Z3 Header Files Set Active Configuration...
-1 Resource Files Configurations...

Erofile... lext.obf - 0 ercoris), 0 warningis)
=]

[*]\, Build { Debig), Findin Files 1) Findin] 4|

Warning and error
messages if any

Visual C++ 6.0

e ! . c <+ Execute
_|Q File Edit ¥iew Insert Project Build Tools Window Help
[dzad ne|=- - mES Rmpoc

DIL ¥V IdUdl L -

Broject Euild Tools Window Help

e . ; |[tGlopals) = [t giobal mem =][® main =L cl I
- — A - 54| winciuae cstaio.n> Project | Build Tools Window Help -
) Eile Edit Yiew Insert Broject |Build Tools Window Help ® ple] | ine masncs B e 2. - meE @b e
]. IB =Sl a . T |@C0ml)'lh exlic = ;ﬁj(:‘;ﬁ::ll::_:i 4 r;::::(;:p"" ortann); lobal men Build mmm F » global ”IEIIIL" in ;IE b |@ [WO]
: Eexr] » [~ Wi 4 Bebuild Al o

21 Header Flles
0 Resource Files

|[(Gtobas) = [[(an globar
R I

1§ Workspace "exampla’: int 1

int main()
i

int « Batch Build..,
Clean Petirno: B

o §7 example files t | Start Diebug i
=4 Source Files i -
Hexl.c » Start Debug » Debugger Remote Cumm io...
s Header Flles Debugger Remote Connecticn...

1 Resource Files

Sat Active Conliguration...
Contigurations...
Erofile...

! Execute example.exe Clrl+F5
Set Active Configuration...
Configurations...

Erofile...

“CONFLqUFATION: eXanple - WINGZ Debig-------

exl.c .
Linking...

K|

\Figuration: example - MindZ Debug

example.exe - 0 error(s), 0 warning(s)

nfiguration: exanpl| 4

[*I Build { Debug Findin Files 1 Findin] €] |

First compile then
link

< .exe file is located in the “Debug” directory in debug configuration
< .exe file is located in the “Release” directory in release configuration16

Visual C++ Command-Line Compiler

< Download at:
* http://msdn.microsoft.com/visualc/vctoolkit2003/

< Install the toolkit

< Configure environment:
* Set PATH=<the toolkit directory>\bin;%PATH%
* Set INCLUDE=<the toolkit directory>\include;%INCLUDE%
* Set LIB=<the toolkit directory>\lib;%LI1B%

Contents

<+ C Development Environment

<+ Basic Procedural Programming Concepts
<+ Functions

<+ Pointers and Arrays

< Strings

<+ Basic 1/0

<~ Memory Allocation

<+ File Operation

<+ Reading the Command Line

Visual C++ Command-Line Compiler

< Compile and Build
> cl foo.c
or
> cl fool.c foo2.c —OUT:foo.exe

< Compile
> cl —c foo.c

< Link
> link fool.obj foo2.0bj —OUT:foo.exe

Basic Programming Concepts

<+ Controlling the CPU+Memory+1/O to obtain your
computational goals

<~ Memory: provides storages for your data
x Constants: 1, 2,'A’, "astring"
* Variables: int count;

< CPU: provides operations to data
* Data movement: count = 1;
* Arithmetic or Boolean expressions: 2 * 4

* Testing and control flow: if statement, for loop, while
loop, function

< 1/0: FILE, stdin, stdout, printf(), scanf(), getc(), ...

Programming Concepts (cont’d)

Procedural programming basics

<+ Step 1: represent your data in terms of variables
basic types: char, int, float, double
user defined types: struct...link lists, trees,...

(Here are what you learned in Data Structure)

< Step 2: figure out how to transform the original
data to the desired result that you want to see
with the primitive operations a computer
provides: ex. search, sort, arithmetic or
logic computations,...

(Here is what you learned in Algorithm).

Contents

<+ C Development Environment

<+ Basic Procedural Programming Concepts
<+ Functions

<+ Pointers and Arrays

< Strings

<+ Basic 1/0

<~ Memory Allocation

<+ File Operation

<+ Reading the Command Line

Programming Concepts (cont’d)

< Additional Requirements

x Structural Programming: if statement, switch-case
statement, iteration structure, function, block ...
(forbidden commands: goto, break...)

* Modularization: function and file

* Functional testing / Unit testing: assertion, unit
testing routines, functional testing routines

Function Basic

< A simple function compute the value of

| Function | .
(double power(double val, unsigned pow)

double ret_val = 1.0;
unsigned i;

} ret_val *= val;
e) h _ return(ret_val);

Function Definition

% The first line of the
function, contains:
* Return data type .-
* Function name ~
* Parameter list, for each |
|

double power(double val, unsigned pow)

Return type: double

. Function name: power
Parameter, contains:

= Parameter data type
« Parameter name

Parameter type: double and unsigned

‘ Parameter list; double val, unsignad pow

Function Declaration & Function Call

< Function can be called only after it is declared, a
simple skeletal program:

(| Decaration | } double power({double val, usigned pow):
void main()
{

double a=2, result; Semicolon
r - unsigned b=5;
| | Function Call [. result=power(a,b);
[| Definitien | | double power{doubla val, usigned pow)
\ .. {

Function Body

< Function Body is bounded by a set of curly brackets

% Function terminates when:

x “return” statement is reached or

= the final closing curly bracket is reached.
< Function returns value by:

* “return(ret_val);” statement, the ret_val must be of the same type
in function definition;

* Return automatically when reaching the final closing curly
bracket , the return value is meaningless.

Function Call

<+ Function can be called at any part of the program
after the declaration:

* The return value of a function can be assigned to a
variable of the same type.
* Example: result = power(2, 5);

« Compute the value of 25 =32 and assign the value to the
variable “result”, equals to “result=32".

Function Parameter

+ C is “called by value” : :
float circlearea(int x);

* The function receives float pi=3.14159;
void main()

copies of values of the }

parameters float result, a=10;
result=circlearea(a);

* Example: printf(“a=%d” ,a);
@ Print “a=10" and ;Ioat circlearea(int x)
“x=314.159”
float y;
y = pi*x*x; x=y;
printf(“x=%d” ,x);
return y;

Contents

<+ C Development Environment

<+ Basic Procedural Programming Concepts
<+ Functions

< Pointers and Arrays

< Strings

<+ Basic 1/0

<~ Memory Allocation

<+ File Operation

<+ Reading the Command Line

Function Variable Scope

float circlearea(int x);

< Limited in the float pi=3.14159;
void main()

function {
float result, a=10;

+ Created each time resultRclrclparental:
when called printf(“a=%d” ,a);
<+ Example,
* pi: whole program e
* result, a: main printf(“x=%d” ,x);
. return y;
* X,Y: circlearea

}

float circlearea(int x)

Basic Pointer Operations

< Declaration: with asterisk *,
* Int *ip; (declare a variable of integer address type)

< Generation: with “address-of” operator &.
*Int i =5; ip = &i; (ip points to the address of i)
< Retrieve the value pointed to by a pointer using the
“contents-of” (or “dereference”) operator, *.
* printf("%d\n", *ip); (equals to “printf("%d\n", i);)
* *ip=10; (equals to “i=10")

Pointers and Arrays Pointers and Arrays: Example

<+ Pointers do not have to point to single variables.
They can also point at the cells of an array.

* Int *ip; int a[10]; ip = &a[3]; oy
short j;
< An array is actually a pointer to the 0-th element of short table(8];

short *ptr;

the array for (j =05 j<=T; j++)
* Int *ip; int a[10]; ip = a; (equals to “ip = &a[0]”) pu;a-h:;l:ﬂn_ul[gl;ﬂ ”

x a[5]=10; is equivalent to *(a+5)=10; —
<+ Pointers can be manipulated by “+” and “-”.
* Int *ip; int a[10]; ip = &a[3];
x The pointer “ip-1” points to a[2] and “ip+3” points to
a[6];

Mote; the size of short is 2

Additional Information Contents

<+ Pointer is a variable too, the content of a pointer is <+ C Development Environment
the address of the memory. <+ Basic Procedural Programming Concepts

<+ Pointers can also form arrays, and there can be a <+ Functions
pointer of pointer. <+ Pointers and Arrays
int * pt[10]; <+ Strings
int ** ppt; (viewedas int* * ppt;) s Basic 1/0
ppt = &pt[0] (or ppt = pt); <~ Memory Allocation
<+ File Operation
+ Reading the Command Line

String basic

<+ Strings in C are represented by arrays of characters.

<+ The end of the string is marked with the null
character, which is simply the character with the
value 0. (Also denoted as "\0";

<+ The string literals:
* char string[] = "Hello, world!";

* We can leave out the dimension of the array, the
compiler can compute it for us based on the size of the
initializer (including the terminating \0).

Note:
char string[]; is illegal
string = "Hello, world!"; is illegal

A Review of C Language

< C Development Environment
< Functions

< Pointers and Arrays

<+ Strings

<~ Memory Allocation
< File Operation
<+ Reading the Command Line

<+ Standard library

String handling

<string.h>

<+ For details, please refer to manual: such as MSDN

strcat,strncat

Append string

strchr,strrchr

Find character in string

strcpy,strncpy

Copy string

strcmp, strncmp

Compare string

strlen

Return string length

strstr

Find substring

Contents

<+ C Development Environment
<+ Basic Procedural Programming Concepts

<+ Functions

<+ Pointers and Arrays

< Strings
+ Basic 1/0

<~ Memory Allocation

<+ File Operation

<+ Reading the Command Line

Char 1/0

< “getchar”: getchar
returns the next
character of keyboard Hinclude <ctypa h>
input as an int. I* For definition of toupper *

“ ” #include =stdio.h>
< “putchar”: putchar puts el |
its character argument I* For definition of getchar, putchar, EOF */

on the standard output ;"F::?{(lh

(usually the screen). while((ch = getchar()) = EOF)
putchar(toupper(ch)),

Format Specification

<+ Basic format specifiers for printf and scanf:
* %d print an int argument in decimal
* %ld print a long int argument in decimal
* %C print a character
* %s print a string
* %f print a float or double argument
* %0 print an int argument in octal (base 8)
* %x print an int argument in hexadecimal (base 16)

String 1/0

< “printf”; Generates output under the control of a
format string

+ “scanf”: Allows formatted reading of data from the
keyboard.

Contents

<+ C Development Environment

<+ Basic Procedural Programming Concepts
<+ Functions

<+ Pointers and Arrays

< Strings

<+ Basic 1/0

<+ Memory Allocation

<+ File Operation

<+ Reading the Command Line

Allocating Memory with “malloc”

<+ Is declared in <stdlib.h>
* void *malloc(size tsize);

< Returns a pointer to n bytes of memory
* char *line = (char *)malloc(100);

<+ Can be of any type;
* Assume “date” is a complex structure;

x struct date *today =
(struct date *)malloc(sizeof(struct date));

< Return null if failed

Reallocating Memory Blocks

<+ Reallocate memory to a pointer which has been
allocated memory before (maybe by malloc)
* void *realloc(void *memblock, size_t size);
* today_and_tomorrow = realloc(today, 2*sizeof(date));

Freeing Memory

<+ Memory allocated with malloc lasts as long as you
want it to.

<+ It does not automatically disappear when a
function returns, but remain for the entire duration
of your program.

<+ Dynamically allocated memory is deallocated with
the free function.
x free(line); free(today);
x fail if the pointer is null or invalid value

Contents

<+ C Development Environment

<+ Basic Procedural Programming Concepts
<+ Functions

<+ Pointers and Arrays

< Strings

<+ Basic 1/0

<~ Memory Allocation

<+ File Operation

<+ Reading the Command Line

File Pointers

< C communicates with files using a extended data
type called a file pointer.
x FILE *output_file;
<+ Common file descriptors:

* “stdin”: The standard input. The keyboard or a
redirected input file.

x “stdout”: The standard output. The screen or a
redirected output file.

* “stderr”: The standard error. The screen or a redirected
output file.

File 1/0

<+ Standard library <stdio.h>

< For details, please refer to manual: such as
MSDN

putchar, putc |Put a character to a file

getchar, getc | Get a character from a file
fprintf Put formatted string into a file.
fscanf Take data from a string of a file.
fputs Put a string into a file

fgets Get a string from a file

Open and Close

<+ Using fopen function, which opens a file (if exist)
and returned a file pointer

* fopen("output_file", "w");
< Using fclose function, which disconnect a file
pointer from a file

< Access character:
* “r”: open for reading;
* “W’”: open for writing;
* “a”: open for appending.

Contents

<+ C Development Environment

<+ Basic Procedural Programming Concepts
<+ Functions

<+ Pointers and Arrays

< Strings

<+ Basic 1/0

<~ Memory Allocation

<+ File Operation

+ Reading the Command Line

Input From the Command Line

< C's model of the command line of a sequence of
words, typically separated by whitespace.
< A program with command arguments:
* int main(int argc, char *argv[]) { ... }
* “argc” is a count of the number of command-line

arguments.

x “argv” is an array (“vector”) of the arguments
themselves.

Ex.
sort filel file2 file3

int a = atoi(argv[1]);

int b = atoi(argv[2]);

int sum=a+b;

printf("%s + %s = %d\n",argv[1],argv[2],5um)};

argc =3
argv[0] = “add”
argv[l] = "4”
argv[2] = 5"

