
1

The Big Three

C++ Object Oriented Programming
Pei-yih Ting

NTOUCS

2

Contents

Destructor

Copy constructor

Assignment operator

The managed pointer

3

Introduction
When the class has the functionality of resource management, it is very likely that
the destructor (dtor), the copy constructor (copy ctor), and the assignment operator
occur together.
Resource management: ex.

class Account {
public:

Account(const char *name, const char *phone, const char *address);
~Account();
….

private:
char *m_name;
char *m_phone;
char *m_address;

};
Account::Account(const char *name, const char *phone, const char *address) {

m_name = new char[strlen(name)+1]; strcpy(m_name, name);
m_phone = new char[strlen(phone)+1]; strcpy(m_phone, phone);
m_address = new char[strlen(address)+1]; strcpy(m_address, address);

}
Account::~Account() {

delete[] m_name; delete[] m_phone; delete[] m_address;
}

dtor

called the BIG 3

remote ownership

4

Copy Constructor (copy ctor)
What is a copy constructor? X(X&)

Account(Account &src); and Account(const Account &src);
When is the copy constructor invoked? when the object is copied
Case 1: Account customer1("Sean Pan",

"123-4567890", "1234 Sunset Blvd.");
Account customer2(customer1);
Account customer3 = custormer1;

Case 2: void fun1(Account customer) {
…

}
Case 3: Account fun2() {

Account x;
…
return x;

}

5

Copy Constructor
If you do not define the copy constructor, the compiler will
synthesize one for your class. This copy constructor copies all the
bits in the object to initiate the new object. For many cases this
implementation does the right thing, but for a class which allocates
memory or handles other resources itself, this usually leads to errors.

m_name
m_phone
m_address

customer 1
m_name
m_phone
m_address

customer 2

12 bytes

"Sean Pan"
"123-4567890"
"1234 Sunset Blvd."Is this really we want?

shallow copy

6

Problems: Dangling Reference
Consider the following function call

void fun(Account customerLocal) {
….

} // the dtor would deallocate the memory belongs to customerLocal
// however, these memory blocks are the same as those of customer

void main() {
Account customer("Sean Pan", "123-4567890", "1234 sunset Blvd.");

…
fun(customer);

…
customer.display(); // show all the customer information

}
At the above line, the statement fun(customer) would cause dangling
reference and the statement customer.display() would access
memory blocks previously belonged to this customer object and
display some strange contents.

7

Problems: Unexpected Release
Sometimes, the resource might be unexpectedly released, ex.

void readFile(ifstream is) {
…
}
void main() {

ifstream infile("input.dat");
…
readFile(infile);
…

}

This is a complicated problem. The program will have runtime error.
Why does the error occurs? You won't be able to correct this by
supplying a copy constructor for ifstream because it is a library class.
The only thing you can easily do is not invoking the copy ctor by
passing the parameter with reference.

8

Example Copy Constructor
Account::Account(Account &src)
{

m_name = new char[strlen(src.m_name)+1];
strcpy(m_name, src.m_name);
m_phone = new char[strlen(src.m_phone)+1];
strcpy(m_phone, src.m_phone);
m_address = new char[strlen(src.m_address)+1];
strcpy(m_address, src.m_address);

}

Copy ctor is a kind of ctor. You should use initialization list
whenever possible. Especially, you should invoke the base class
copy ctor if it is a derived class.
In a copy ctor, you are creating an object. The memory space for the
object itself is just allocated by system, the ctor need to initialize it.
If you would like to prevent public use of call-by-value semantics of
a certain object, you can declare a dummy copy ctor in the private
section.

9

Member Object and Base Class
Copy constructor is a constructor, member objects and base class
must be initialized through initialization list
For example:

class Derived: public Base
{
public:

…
Derived(Derived &src);
…

private:
Component m_obj;

};
Derived::Derived(Derived &src): Base(src), m_obj(src.m_obj) {

…
}

10

Assignment Operator
Where is the assignment operator invoked?

Account customer1("abc", "1234", "ABC street");
Account customer2, customer3; // assume default ctor defined
customer2 = customer1;
customer2.operator=(customer1);
customer3 = customer2 = customer1;

Note: Account customer2 = customer1;
does not invoke the assignment operator

What is its prototypes?
Account &operator=(Account &rhs);

No extra copy ctor invoked

Designed for continuously assignment
customer3.operator=(customer2.operator=(customer1));

11

Assignment Operator
Again, if the class being designed allocates its own resources. It is
quite often to see the dtor, copy ctor, and the assignment operator
occur together.
There are seven important things to do in an assignment operator

Account &Account::operator=(Account &rhs)
{

if (&rhs == this) return *this;
delete[] m_name; delete[] m_phone; delete[] m_address;
m_name = new char[strlen(rhs.m_name)+1];
m_phone = new char[strlen(rhs.m_phone)+1];
m_address = new char[strlen(rhs.m_address)+1];
strcpy(m_name, rhs.m_name);
strcpy(m_phone, rhs.m_phone);
strcpy(m_address, rhs.m_address);
// invoke the base class assignment operator
// invoke the component object assignment operator
return *this;

}

Detecting self assignments

12

Assignment Operator
You can declare the assignment operator in the private section to
prevent public usage of the assignment semantics.
If there is a reference variable or a const variable defined in the class,
there is no way to define the assignment operator.

Usually, the assignment operator repeats the codes both in the copy
ctor and the dtor. It is common to prepare common functions to be
called in assignment operator, copy ctor and the dtor.

Again, three make a team. Do not forget any one of them.

13

Managed Pointer
Standard template class auto_ptr<T>: #include <memory>

auto_ptr<Fred> acts like a Fred* except that it owns the referent
(the Fred object)

1. You can declare a managed pointer with NULL value initially
auto_ptr<Fred> ptr;

2. You can invoke the assignment operator later
ptr = auto_ptr<Fred>(new Fred());

3. You can also construct a pointer with
auto_ptr<Fred> ptr(new Fred()); or
auto_ptr<Fred> ptr = new Fred();

4. This object can be used anywhere like a Fred* pointer.
ptr−>services();
*ptr.services();

Fred *ptrRaw = ptr.get();

ptr now owns this
new Fred object

14

Managed Pointer (cont’d)
5. Copy ctor is implemented with ownership transfer

auto_ptr<Fred> newPtr = ptr; // or
auto_ptr<Fred> newPtr(ptr);

6. When this object goes out of scope, the
dtor will delete the owned Fred object.

7. What about an explicit delete?
delete ptr; // syntax error

8. If you copy the managed pointer from another managed pointer
without ownership to the real object, the new managed pointer
does not have ownership to the real object. If you construct a
new managed pointer with a raw pointer twice, both objects have
ownership. Fortunately, delete in its dtor will only succeed once.
But using a pointer without ownership to the real object is likely
to be a dangling reference like a raw pointer.

newPtr now owns the Fred
object originally owned by
ptr, ptr will point to the same
object afterwards but do not
own it anymore.

