
二分勘根法

Bisection Root Finding

丁培毅

2

Finding the Roots of f(x)

• Change of sign implies an odd number of roots
in the segment [xleft, xright]

• Assume there is only one root in this region, …

(b) Three roots

xleft

xright

f(xright)

f(xleft)
x

(a) One root

xleft

xright

f(xright)

f(xleft)
x

f(x) f(x)

3

Three Possibilities
• When the interval [xleft, xright] is divided as two equal

segments

xleft

xright

f(xright)

f(xleft)
x

xmid

f(xmid) = 0

root is xmid f(x)

xleft

xright

f(xright)

f(xleft)
x

xmid

f(xmid)

root is in [xleft, xmid] f(x)

xleft

xright

f(xright)

f(xleft)
x

xmid

f(xmid)

root is in [xmid, xright]
f(x)

 f(xmid) f(xleft) < 0
 f(xmid)f(xleft) > 0

 f(xmid) == 0

4

Use a while Loop to divide the
interval by 2 each time

1. Given xleft and xright , xmid = (xleft+xright) / 2
2. a. Calculate f(xmid)

b. if (f(xleft)f(xmid) < 0) xright = xmid
c. else if (f(xleft)f(xmid) > 0) xleft = xmid
d. else if (f(xmid) == 0) root is xmid, break

Repeat the above two steps 01 while (1)
02 {
03 x_mid = (x_left + x_right) / 2.0;
04 if (fabs(f(x_mid)) < 1.0e-10)
05 break;
06 else if (f(x_left) * f(x_mid) < 0.0)
07 x_right = x_mid;
08 else // if (f(x_right) * f(x_mid) < 0.0)
09 x_left = x_mid;
10 }

xleft

xright

f(xright)

f(xleft)
xxmid

f(xmid)

x_right-x_left > 1.0e-10

5

Eliminating Redundant Evaluations
• function f() on each point

xmid is called 3 times in
one iteration, and is
called once as xleft or
xright in the following
iteration
– Use variables to save the

function values calculated
previously

01 f_left = f(x_left);
02 f_right = f(x_right);
03 while (x_right-x_left > 1.0e-10) {
04 x_mid = (x_left + x_right) / 2.0;
05 f_mid = f(x_mid);
06 if (fabs(f_mid) < 1.0e-10)
07 break;
08 else if (f_left * f_mid < 0.0) {
09 x_right = x_mid;
10 f_right = f_mid;
11 }
12 else if (f_right * f_mid < 0.0) {
13 x_left = x_mid;
14 f_left = f_mid;
15 }
16 }

• log2(n) evaluations out of
n=(x1-x0)/ segments
– (x1-x0)/2k  
– i.e. k  log2(n)



Other Related Applications

• Newton’s method for finding minima (or root)
• Binary Search: find the specified value from a sorted

array of integers

x

f(x*)=0

f(x)

f'(x)

x*

6

Other Applications (cont’d)
• Find the Duplicate Number (Leetcode 287)

– Given an array nums[] containing n+1 integers where
each integer is between 1 and n (inclusive), Pidgin hole
principle assures that at least one duplicate number must
exist. Assume that there is only one duplicate number,
find it. Note: You must not modify the array. You must use
only constant, O(1) extra space. Your runtime complexity
should be less than O(n2).

• Find Minimum in Rotated Sorted Array (Leetcode 153)
– Suppose a sorted array is rotated by you beforehand. (i.e.,

0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2). Find the
minimum element. You may assume no duplicate exists in
the array. Computation O(log2 n) is demanded.

7

