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Finding the Roots of f(x)

• Change of sign implies an odd number of roots 
in the segment [xleft, xright]

• Assume there is only one root in this region, …
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Three Possibilities
• When the interval [xleft, xright] is divided as two equal 

segments
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Use a while Loop to divide the 
interval by 2 each time

1. Given xleft and xright , xmid = (xleft+xright) / 2
2. a. Calculate f(xmid)

b. if (f(xleft)f(xmid) < 0) xright = xmid
c. else if (f(xleft)f(xmid) > 0) xleft = xmid
d. else if (f(xmid) == 0) root is xmid, break

Repeat the above two steps 01 while (1)
02 {
03     x_mid = (x_left + x_right) / 2.0;
04     if (fabs(f(x_mid)) < 1.0e-10)
05         break;
06     else if (f(x_left) * f(x_mid) < 0.0)
07         x_right = x_mid;                        
08     else // if (f(x_right) * f(x_mid) < 0.0)
09         x_left = x_mid; 
10 } 
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Eliminating Redundant Evaluations
• function f() on each point 

xmid is called 3 times in 
one iteration, and is 
called once as xleft or 
xright in the following 
iteration
– Use variables to save the 

function values calculated 
previously

01 f_left = f(x_left);
02 f_right = f(x_right);
03 while (x_right-x_left > 1.0e-10) {
04     x_mid = (x_left + x_right) / 2.0;
05     f_mid = f(x_mid);
06     if (fabs(f_mid) < 1.0e-10)
07         break;
08     else if (f_left * f_mid < 0.0) {
09           x_right = x_mid;
10           f_right = f_mid;
11     }
12     else if (f_right * f_mid < 0.0) {
13           x_left = x_mid;
14           f_left = f_mid;
15     }
16 }

• log2(n) evaluations out of 
n=(x1-x0)/ segments 
– (x1-x0)/2k  
– i.e. k  log2(n)





Other Related Applications

• Newton’s method for finding minima (or root)
• Binary Search: find the specified value from a sorted 

array of integers
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Other Applications (cont’d)
• Find the Duplicate Number (Leetcode 287)

– Given an array nums[ ] containing n+1 integers where 
each integer is between 1 and n (inclusive), Pidgin hole 
principle assures that at least one duplicate number must 
exist.  Assume that there is only one duplicate number, 
find it.  Note: You must not modify the array. You must use 
only constant, O(1) extra space.  Your runtime complexity 
should be less than O(n2). 

• Find Minimum in Rotated Sorted Array (Leetcode 153)
– Suppose a sorted array is rotated by you beforehand. (i.e., 

0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).  Find the 
minimum element.  You may assume no duplicate exists in 
the array.  Computation O(log2 n) is demanded.
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