_ 71 }}ﬁ_}JT[wQ—‘ﬁ

Bisection Root Finding

e s

Finding the Roots of f(x)

JX)
f(Xier)
ot Xright
. >
Xleft 1E(Xright)
(a) One root (b) Three roots

e Change of sign implies an odd number of roots
In the segment [Xgq, Xjigndl

e Assume there is only one root in this region, ...

f(Xjen)

Three Possiblilities

* When the interval [X.¢, X
segments

. X..
mid right
o X
f(Xright)
. _ f(X) /
IS 1N [Xiefts Xpmial ()

rlght

D T(Xia) T(Xjerd) < 0
;f(xleft) f(x, .

] Is divided as two equal
D f(Xmig)JT(Xer) > 0

Xleft

T (Kier) f(Xm,d) O
rlght
________ ' ¥ > X
X Xk
root IS Xiqg
. f(x)

3

Use a while Loop to divide the
Interval by 2 each time

1. Given Xier @and Xyignt » Xmiag = (Xies™Xiignt) / 2
2. a. Calculate f(X,i4)

0.1 (F(Xier) {(Xmig) < 0) Xiight = Ximia
c. else if (f(x)X) > 0) Xior, = X, /' x_right-x_left > 1.0e-10

d. else if (f(xmid) == O) root is X, break :::
Repeat the above two steps 01wh||e (1;,

02 {

03 x_mid = (x_left + x_right) / 2.0;

04 if (fabs(f(x_mid)) < 1.0e-10)

05 break;

06 else if (f(x_left) * f(x_mid) < 0.0)

07 X_right = x_mid;

08 else /lif (f(x_right) * f(x_mid) < 0.0)
09 X_left = x_mid;

10} 4

Eliminating Redundant Evaluations

 function f() on each point 01 f_left = f(x_left); o

X .. is called 3 times in 02 f_right = f(x_right); y
03 while (x_right-x_left > 1.0e-10) {

mid

one iteration, and is 04 x_mid = (x_left + x_right) / 2.0:
called once as X or 05 f mid = f(x_mid):

Xight IN the following 06 if (fabs(f_mid) < 1.0e-10)
iteration 07 break;

_ Use variables to save the 08 elseif (f left*f mid <0.0) {

function values calculated 09])f—r_ingt_: fx_rr_](;c_l;
previously 10 _right =1_mid,
11}
12 elseif (f_rnght*f mid < 0.0) {
- 13 X_left = x_mid,;
log,(n) evaluations out of 14 f left = f_mid:
n=(X;-Xy)/e segments 15)
— (XX)2k~ ¢ 16 }

— i.e. k= log,(n)

Other Related Applications

f(x)

 Newton’s method for finding minima (or root)

« Binary Search: find the specified value from a sorted
array of integers

Other Applications (cont’'d)

* Find the Duplicate Number (Leetcode 287)

— Given an array nums| | containing n+1 integers where
each integer is between 1 and n (inclusive), Pidgin hole
principle assures that at least one duplicate number must
exist. Assume that there is only one duplicate number,
find it. Note: You must not modify the array. You must use
only constant, O(1) extra space. Your runtime complexity
should be less than O(n?).

 Find Minimum in Rotated Sorted Array (Leetcode 153)

— Suppose a sorted array is rotated by you beforehand. (i.e.,
0124567 mightbecome4567012). Find the
minimum element. You may assume no duplicate exists in
the array. Computation O(log, n) is demanded.

