
Programming ExamplesProgramming Examples
Using ArraysUsing Arrays

Pei-yih TingPei-yih TingPei yih TingPei yih Ting

Search and Sort an ArraySearch and Sort an Arrayyy
Two common problems in processing arraysTwo common problems in processing arrays

 Searching an array to determine the location of a
particular value.

 Searching an array to determine the location of a
particular value.

 Sorting an array to rearrange the array elements in
numerical order.

 Sorting an array to rearrange the array elements in
numerical order.

 Examples
 Search an array of student exam scores to determine

 Examples
 Search an array of student exam scores to determine Search an array of student exam scores to determine

which student, if any, got a particular score.
 Rearrange the array elements in increasing (decreasing)

 Search an array of student exam scores to determine
which student, if any, got a particular score.

 Rearrange the array elements in increasing (decreasing) Rearrange the array elements in increasing (decreasing)
order by score.

Algorithm for searching over a sorted array is much

 Rearrange the array elements in increasing (decreasing)
order by score.

Algorithm for searching over a sorted array is much
22

Algorithm for searching over a sorted array is much
more efficient than over an unsorted array.

Algorithm for searching over a sorted array is much
more efficient than over an unsorted array.

Algorithm of Linear SearchAlgorithm of Linear Searchgg
1 Assume the target has not been found1 Assume the target has not been found

(Sequential Search)
1. Assume the target has not been found.
2. Start with the initial array element.
3 Repeat while the target is not found and there are more array

1. Assume the target has not been found.
2. Start with the initial array element.
3 Repeat while the target is not found and there are more array3. Repeat while the target is not found and there are more array

elements
3.1 if the current element matches the target

3. Repeat while the target is not found and there are more array
elements
3.1 if the current element matches the target3.1 if the current element matches the target

3.1.1 Set a flag to indicate that the target has been found
else

3.1 if the current element matches the target
3.1.1 Set a flag to indicate that the target has been found
elseelse

3.1.2 Advance to the next array element
4 if the target was found

else
3.1.2 Advance to the next array element

4 if the target was found4. if the target was found
4.1 Return the target index as the search result

else

4. if the target was found
4.1 Return the target index as the search result

else

33

else
4.2 Return -1 as the search result

else
4.2 Return -1 as the search result

Search an ArraySearch an Arrayyy
01 int search(const int array[], /* input - array to search */
02 int target, /* input - value searched for */
03 int n) { /* input number of elements to search */03 int n) { /* input - number of elements to search */
04 int i,
05 found = 0, /* whether or not target has been found */
06 where; /* index where target found or NOT_FOUND */
07

; / g _ /
07
08 /* Compares each element to target */
09 i = 0;
10 while (!found && i < n) {10 while (!found && i < n) {
11 if (array[i] == target)
12 found = 1;
13 else
14 i14 ++i;
15 }
16
17 /* Returns index of element matching target or NOT_FOUND */g g
18 if (found)
19 where = i;
20 else
21 where = NOT FOUND;

44

21 where = NOT_FOUND;
22
23 return (where);
24 }

Sorting an ArraySorting an Arrayg yg y
74 45 83 16

[0] [1] [2] [3]
fill = 0

Selection sort is an intuitiveSelection sort is an intuitive

74 45 83 16

[0] [1] [2] [3]
sorting algorithm.
 Find the index of the smallest
sorting algorithm.
 Find the index of the smallest

16 45 83 74

[0] [1] [2] [3]
fill = 1

 Find the index of the smallest
element in the array.

 S th ll t l t ith

 Find the index of the smallest
element in the array.

 S th ll t l t ith
[0] [1] [2] [3]

fill 2 Swap the smallest element with
the first element.

 Swap the smallest element with
the first element.

16 45 83 74
fill = 2

 Repeat the above steps for the
2nd, 3rd, …, smallest elements.

 Repeat the above steps for the
2nd, 3rd, …, smallest elements. [0] [1] [2] [3]

55

16 45 74 83

Function select_sortFunction select_sort
01 int get_min_range(int list[], int first, int last);
02 void select_sort(int list[], /* input/output - array being sorted */
03 i t) /* i t b f l t t t */03 int n) /* input - number of elements to sort */
04 {
05 int fill, /* first element in unsorted subarray */
06 temp, /* temporary storage */
07 index_of_min; /* subscript of next smallest element */
08
09 for (fill 0; fill < n 1; ++fill) {09 for (fill = 0; fill < n-1; ++fill) {
10 /* Find position of smallest element in the unsorted subarray */
11 index_of_min = get_min_range(list, fill, n-1);
1212
13 /* Exchange elements at fill and index_of_min */
14 if (fill != index_of_min) {
15 temp list[index of min];15 temp = list[index_of_min];
16 list[index_of_min] = list[fill];
17 list[fill] = temp;
8 }

66

18 }
19 }
20 }

Computing StatisticsComputing Statisticsp gp g
 Most common use of arrays is for storage of a collection of

related data values
 Most common use of arrays is for storage of a collection of

related data valuesrelated data values.
 Once the values are stored, we can perform some simple

statistical computations

related data values.
 Once the values are stored, we can perform some simple

statistical computationsstatistical computations. statistical computations.

sum = x[0] + x[1] + … + x[MAX_ITEM-1]
mean = sum / MAX_ITEM
sum_square = x[0]2 + x[1]2 + … + x[MAX_ITEM-1]2

2variance = (sum_square – MAX_ITEM * mean2) /
(MAX_ITEM – 1)

standard deviation = sqrt(variance)
histogram?

77

mode?
median?

Computing Statistics (cont’d)Computing Statistics (cont’d)p g ()p g ()
Figure 8.301 #include <stdio.h>

02 #include <math.h>
03 #define MAX_ITEM 8 /* maximum number of items in list of data */
04 int
05 main(void)05 main(void)
06 {
07 double x[MAX_ITEM], /* data list */
08 mean /* mean (average) of the data */08 mean, /* mean (average) of the data */
09 st_dev, /* standard deviation of the data */
10 sum, /* sum of the data */
11 /* f th f th d t */11 sum_sqr; /* sum of the squares of the data */
12 int i;
13
14 /* Gets the data */
15 printf("Enter %d numbers separated by blanks or <return>s\n> ",
16 MAX_ITEM);

88

17 for (i = 0; i < MAX_ITEM; ++i)
18 scanf("%lf", &x[i]);

19 /* Computes the sum and the sum of the squares of all data */
20 sum = 0;
21 sum sqr = 0;21 sum_sqr 0;
22 for (i = 0; i < MAX_ITEM; ++i) {
23 sum += x[i];
24 sum sqr += x[i] * x[i];24 sum_sqr += x[i] * x[i];
25 }
26
27 /* Computes and prints the mean and standard deviation */27 /* Computes and prints the mean and standard deviation */
28 mean = sum / MAX_ITEM;
39 st_dev = sqrt((sum_sqr - MAX_ITEM * mean * mean)
40 / (MAX_ITEM-1));
30 printf("The mean is %.2f.\n", mean);
31 printf("The standard deviation is %.2f.\n", st dev);p (\ , _);
32
33 /* Displays the difference between each item and the mean */
34 printf("\nTable of differences between data values and mean\n");p ()
35 printf("Index Item Difference\n");
36 for (i = 0; i < MAX_ITEM; ++i)
37 printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ', x[i] - mean);

99

37 printf(%3d%4c%9.2f%5c%9.2f\n , i, , x[i], , x[i] mean);
38
39 return (0);
40 }

Computing Statistics (cont’d)Computing Statistics (cont’d)p g ()p g ()

Enter 8 numbers separated by blanks or <return>sEnter 8 numbers separated by blanks or <return>s
> 16 12 6 8 2.5 12 14 -54.5

Th i 2 00The mean is 2.00.
The standard deviation is 21.75.

Table of differences between data values and mean
Index Item Difference
0 16.00 14.00
1 12.00 10.00
2 6.00 4.00
3 8 00 6 003 8.00 6.00
4 2.50 0.50
5 12.00 10.00
6 14 00 12 00

1010

6 14.00 12.00
7 -54.50 -56.50

Matrix OperationsMatrix Operationspp
AdditionAddition

 Ex. A and B are both 3-by-5, C = A + B Ex. A and B are both 3-by-5, C = A + B
1 2 3 2 3 7 2 3 2 6 8 4 6 4 9

4 5 6 5 6

1 2 5 4 5

4 1 0 3 2

1 4 4 2 2

8 6 6 8 8

2 6 9 6 7

+ =

 Cij = Aij + Bij Cij = Aij + Bij

5 4 5 4 4 6 9 6

int i, j, m=3, n=5;
double a_mat[3][5], b_mat[3][5];
d bl t[3][5]double c_mat[3][5];
for (i=0; i<m; i++)

for (j 0; j<n; j++)

1111

for (j=0; j<n; j++)
c_mat[i][j] = a_mat[i][j] + b_mat[i][j];

Matrix Operations (cont’d)Matrix Operations (cont’d)p ()p ()
Multiplication

T
Multiplication

T
 Ex. A and B are both 3-by-5, C = A BT
 Ex. A and B are both 3-by-5, C = A BT

17 4
42 1 42 18 311 2 3 2 3

C  A BTC  A BT5

=
42 1
43 0
22 3

42 18 31

102 48 70

64 28 47

1
4
1

2
5
2

3
6
5

2
5
4

3
6
5 Cij =  Aik BT

kj Cij =  Aik BT
kj

k=1 26 2
64 28 471 2 5 4 5

int i, j, k, m=3, n=5;
double a_mat[3][5], b_mat[3][5];
double c_mat[3][3];
for (i=0; i<m; i++)

for (j=0; j<m; j++)
f (k 0 [i][j] 0 k k)

1212

for (k=0, c_mat[i][j]=0; k<n; k++)
c_mat[i][j] += a_mat[i][k] * b_mat[j][k];

Matrix Operations (cont’d)Matrix Operations (cont’d)p ()p ()
 In-place Computation??

A B Rmxn A + B  A A B Rnxn A BT  A
 In-place Computation??

A B Rmxn A + B  A A B Rnxn A BT  AA, BRmxn, A + B  A; A, BRnxn, A BT  AA, BRmxn, A + B  A; A, BRnxn, A BT  A

int i j m 3 n 5;int i, j, m=3, n=5;
double a_mat[3][5], b_mat[3][5];
for (i=0; i<m; i++)

int i, j, k, n=3;
double a mat[3][3]; for (i=0; i<m; i++)

for (j=0; j<n; j++)
a mat[i][j] += b mat[i][j];

double a_mat[3][3];
double b_mat[3][3], sum;
for (i=0; i<n; i++) a_mat[i][j] + b_mat[i][j];for (i=0; i<n; i++)

for (j=0; j<n; j++)
{{

for (k=0, sum=0; k<n; k++)
sum += a_mat[i][k] * b_mat[j][k];

1
4

2
5

3
6

7
2

4
1

1
4

1313

[][] [j][];
a_mat[i][j] = sum;

}
1 2 5 3 0 4

Gaussian EliminationGaussian Elimination
 Solve linear equations using Gaussian Elimination and find out

the rank. e.g.
L1: 2 x + y z 8

 Solve linear equations using Gaussian Elimination and find out
the rank. e.g.

L1: 2 x + y z 8L1: 2 x + y – z = 8
L2: -3 x – y + 2 z = -11
L3: -2 x + y + 2 z = -3

L1: 2 x + y – z = 8
L2: -3 x – y + 2 z = -11
L3: -2 x + y + 2 z = -3

 I t i t ti h th f ll i In matrix notation, we have the following
2 1 -1 8
-3 -1 2 -11

1 0.5 -0.5 4
0 0 5 0 5 1

Normalize 1st row
Multiply 3 and add to 2nd row3 1 2 11

-2 1 2 -3
0 0.5 0.5 1
0 2 1 5

Multiply 3 and add to 2 row
Multiply 2 and add to 3rd row

1 0 -1 3
0 1 1 2

Normalize 2nd row
M lti l 0 5 d dd t 1st0 1 1 2

0 0 -1 1
Multiply -0.5 and add to 1st row
Multiply -2 and add to 3rd row

1 0 0 2 Normalize 3rd row

x=2, y=3, z = -1 are the result.

0 1 0 3
0 0 1 -1

Multiply 1 and add to 1st row
Multiply -1 and add to 2nd row

x 2, y 3, z 1 are the result.
Since the left 3 by 3 submatrix is an identity matrix, the number of independent
equations is 3. (If one row is all zero, then the number of independent equations is
2 and if two rows are all zero, the number of independent equations is 1, etc.)

Counting SortCounting Sortgg
 Elements to be sorted are in a set {0,1,…,k}
 Use an auxiliary array to count the occurrence frequency
 Elements to be sorted are in a set {0,1,…,k}
 Use an auxiliary array to count the occurrence frequency

LC1122 Relative Sort Array

 Use an auxiliary array to count the occurrence frequency
of each elements

 Use an auxiliary array to count the occurrence frequency
of each elements

87654321A 87654321BThe last 3

30320352
87654321

543210

A

C 543210C
3

87654321B

543210C

should be
placed at B[7]

103202
C

877422
C

876422
C

30
87654321B

330
87654321B

3320
87654321B

30

876421
543210C

330

875421
543210C

3320

874321
543210C

1515
 Non-comparison sort, stable sort, O(n) Non-comparison sort, stable sort, O(n)

876421875421874321

Radix SortRadix Sort
 Stably sort each digits, least significant digits first Stably sort each digits, least significant digits first

326
453
608

690
751
453

704
608
326

326
435
453

Bucket (Bin) Sort
distribute MSB first

608
835
751

453
704
835

326
835
435

453
608
690

435
704
690

435
326
608

751
453
690

704
751
835690 608 690 835

sorted

Radix-sort(Array, n)
1. for i=0 to n-1

Radix-sort(Array, n)
1. for i=0 to n-1

1616

2. use a stable sort algorithm to sort Array on digit i2. use a stable sort algorithm to sort Array on digit i

Radix-8 Sort (cont’d)Radix-8 Sort (cont’d)()()
A radix-8 sort

 1 dim array of positive integers to be sorted:
A radix-8 sort

 1 dim array of positive integers to be sorted: 1-dim array of positive integers to be sorted:
 e.g. 100, 003, 667, 027, 120, 013, 325

 2-dim array of integers is used as the working space

 1-dim array of positive integers to be sorted:
 e.g. 100, 003, 667, 027, 120, 013, 325

 2-dim array of integers is used as the working space
in octal

 rows (the buckets) indexed from 0 to 7 and
 columns indexed from 0 to n-1
 rows (the buckets) indexed from 0 to 7 and
 columns indexed from 0 to n-1

0
1
100 120 0

1
100
013

003 0
1
003
100

013
120

027
0 1 2 n-1 0 1 2 n-1 0 1 2 n-1

2
3
4
003 013 …

2
3
4

120 325 027
…

2
3
4

325
…

5
6
7

325

667 027

5
6
7
667

5
6
7
667

1717

7 667 027

027100 325 667013003120

7

667100 325 027120013003

7

667003 120 325100027013

Radix-8 Sort (cont’d)Radix-8 Sort (cont’d)()()
 The radix-8 sorting is done as follows:

 Distribute: Place each value of the one dimensional vector into a
 The radix-8 sorting is done as follows:

 Distribute: Place each value of the one dimensional vector into a Distribute: Place each value of the one-dimensional vector into a
bucket, based on the value's rightmost octal digit. For example, 67 is
placed in row 7, 3 is placed in row 3 and 100 is placed in row 0. This

d i ll d di t ib ti

 Distribute: Place each value of the one-dimensional vector into a
bucket, based on the value's rightmost octal digit. For example, 67 is
placed in row 7, 3 is placed in row 3 and 100 is placed in row 0. This

d i ll d di t ib tiprocedure is called a distribution pass.
 Gather: Loop through the bucket vector row by row, and copy the

values back to the original vector. This procedure is called a

procedure is called a distribution pass.
 Gather: Loop through the bucket vector row by row, and copy the

values back to the original vector. This procedure is called a g p
gathering pass. The new order of the preceding values in the one-
dimensional vector is 100, 3 and 67.

 Repeat this process for each subsequent digit position (2nd

g p
gathering pass. The new order of the preceding values in the one-
dimensional vector is 100, 3 and 67.

 Repeat this process for each subsequent digit position (2nd Repeat this process for each subsequent digit position (2nd
rightmost, 3rd rightmost, etc.). e.g. On the second pass, 100 is
placed in row 0, 3 is placed in row 0 (3 can be seen as 003) and 97
i l d i 9 Aft th th i th d f th l

 Repeat this process for each subsequent digit position (2nd
rightmost, 3rd rightmost, etc.). e.g. On the second pass, 100 is
placed in row 0, 3 is placed in row 0 (3 can be seen as 003) and 97
i l d i 9 Aft th th i th d f th lis placed in row 9. After the gathering pass, the order of the values
in the one-dimensional vector is 100, 3 and 97. On the third (3rd
rightmost) pass, 100 is placed in row 1, 3 is placed in row 0 and 97

is placed in row 9. After the gathering pass, the order of the values
in the one-dimensional vector is 100, 3 and 97. On the third (3rd
rightmost) pass, 100 is placed in row 1, 3 is placed in row 0 and 97

1818

is placed in row 0 (after the 3). After this last gathering pass, the
original vector is in sorted order.
is placed in row 0 (after the 3). After this last gathering pass, the
original vector is in sorted order.

Radix Sort ImplementationRadix Sort Implementation
01 void radix8Sort(int ndata, int data[]) {
02 int buckets[8][MAX], int nBucket[8];
03 int i j k index mult iBucket;

01 void radix8Sort(int ndata, int data[]) {
02 int buckets[8][MAX], int nBucket[8];
03 int i j k index mult iBucket;03 int i, j, k, index, mult, iBucket;
04 int len = maxNumDigits(ndata, data); /* max number of octal digits */
05 mult = 1;

03 int i, j, k, index, mult, iBucket;
04 int len = maxNumDigits(ndata, data); /* max number of octal digits */
05 mult = 1;
06 for (i=0; i<len; i++) {
07 for (j=0; j<8; j++) nBucket[j] = 0;
08 for (j=0; j<ndata; j++) {

06 for (i=0; i<len; i++) {
07 for (j=0; j<8; j++) nBucket[j] = 0;
08 for (j=0; j<ndata; j++) { redistribute08 for (j 0; j<ndata; j++) {
09 iBucket = data[j] / mult % 8;
10 buckets[iBucket][nBucket[iBucket]++] = data[j];
11 }

08 for (j 0; j<ndata; j++) {
09 iBucket = data[j] / mult % 8;
10 buckets[iBucket][nBucket[iBucket]++] = data[j];
11 }

redistribute

11 }
12 for (j=0, index=0; j<8; j++)
13 for (k=0; k<nBucket[j]; k++)

11 }
12 for (j=0, index=0; j<8; j++)
13 for (k=0; k<nBucket[j]; k++)

19 int maxNumDigits(int ndata,
20 int data[]) {
21 int i, max = -1;3 o (0; u [j];)

14 data[index++] =
15 buckets[j][k];
16 lt * 8

3 o (0; u [j];)
14 data[index++] =
15 buckets[j][k];
16 lt * 8

21 int i, max 1;
22 for (i=0; i<ndata; i++)
23 if (data[i] > max)
24 max = data[i];

1919

16 mult *= 8;
17 }
18 }

16 mult *= 8;
17 }
18 }

24 max = data[i];
25 return (log10(max)/log10(8))+1;
26 }

gather

Parallel ArraysParallel Arraysyy
 Two or more arrays with the same number of elements  Two or more arrays with the same number of elements

used for storing related information about a collection
of data objects
used for storing related information about a collection
of data objects

 A very common method to organize data with arrays A very common method to organize data with arrays

5503
4556

id[0]
id[1]

2.71
3.09

gpa[0]
gpa[1]

5691
…

id[2] 2.98
…

gpa[2]

9146id[49] 1.92gpa[49]

2020

 id[i] and gpa[i] refer to the information related to
the i-th student

 id[i] and gpa[i] refer to the information related to
the i-th student

StacksStacks
 A stackstack is a data structure in which only the top element

can be accessed
 A stackstack is a data structure in which only the top element

can be accessedcan be accessed.
 For example, the plates stored in the spring-loaded device

in a buffet line perform like a stack. A customer always

can be accessed.
 For example, the plates stored in the spring-loaded device

in a buffet line perform like a stack. A customer always p y
takes the top plate; when a plate is removed, the plate
beneath it moves to the top.

 Popping the stack: remove a value from a stack

p y
takes the top plate; when a plate is removed, the plate
beneath it moves to the top.

 Popping the stack: remove a value from a stack Popping the stack: remove a value from a stack.
 Pushing it onto the stack: store an item in a stack.
 Popping the stack: remove a value from a stack.
 Pushing it onto the stack: store an item in a stack.

a
b b

d
b

pop push

c c ca d

2121

 Array is one of the approaches to implement a stack.  Array is one of the approaches to implement a stack.

Algorithm Utilizing StacksAlgorithm Utilizing Stacksg gg g
 Expression evaluation

* b / d
 Expression evaluation

* b / da * b + c / d =
 Two stacks: operand stack, operator stack

a * b + c / d =
 Two stacks: operand stack, operator stack

a a
b
a a*b

push push pushpop
pop

poppush
* * +

+ < * push

c
*b

+

push c d
c

push
c/d

push
pop

pop
pop

a*b

/

a*b
push

/

c
a*b

c/d
a*b

pop

pop
pop

2222

+
/
+

/
+ +

= < / pop
= < + pop

Push: Insert a New Element
t th T f St k

Push: Insert a New Element
t th T f St kto the Top of Stackto the Top of Stack

#define STACK SIZE 100#define STACK_SIZE 100
char stack[STACK_SIZE];
int top = -1; /* the position of current stack top */

01 void
push(stack, 'a', &top, STACK_SIZE);

02 push(char stack[], /* input/output - the stack */
03 char item, /* input - data being pushed onto the stack */
04 int *top /* input/output pointer to top of stack */04 int *top, /* input/output - pointer to top of stack */
05 int max_size) /* input - maximum size of stack */
06 {
07 if (*top < max_size-1) {
08 ++(*top);
09 stack[*top] = item;

2323

09 stack[top] = item;
10 }
11 }

Pop: Remove from Top of
St k El t

Pop: Remove from Top of
St k El tStack an ElementStack an Element

char content;

01 char
02 (h k[] /* i / h k */

char content;
…
content = pop(stack, &top);

02 pop(char stack[], /* input/output - the stack */
03 int *top) /* input/output - pointer to top of stack */
04 {{
05 char item; /* value popped off the stack */
06
07 if (*t > 0) {07 if (*top >= 0) {
08 item = stack[*top];
09 --(*top);(p);
10 } else {
11 item = STACK_EMPTY;
12 }

2424

12 }
13 return item;
14 }

Binary TreeBinary Tree 1yy
 A binary tree is a tree data

structure in which each node
 A binary tree is a tree data

structure in which each node

1

2 3

104

71 24structure in which each node
has at most two children.
structure in which each node
has at most two children. 4 5 6 7

66 27 23 8
5 32 25 18 22

158 9 10 11 12 13 14

5 32 25 18 22

104 71 24 66 27 23 8 5 32 NIL 25 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
22 NIL NIL

 To represent a binary tree, the value in node label i can be
stored in cell i of an array

 To represent a binary tree, the value in node label i can be
stored in cell i of an arraystored in cell i of an array

 The parent of node label i is node label i/2
The left child of node label i is node label 2*i

stored in cell i of an array
 The parent of node label i is node label i/2

The left child of node label i is node label 2*i

2525

The right child of node label i is node label 2*i+1The right child of node label i is node label 2*i+1

Disjoint SetDisjoint Setjj
 Pairwise disjoint sets X and Y satisfies X  Y = 

e g {2 4 5 8 9} {1} {3 6 7}
 Pairwise disjoint sets X and Y satisfies X  Y = 

e g {2 4 5 8 9} {1} {3 6 7}e.g. {2, 4, 5, 8, 9}, {1}, {3, 6, 7}
 Each set can be represented as an arbitrary structured tree

and the root is marked as the representative of that set

e.g. {2, 4, 5, 8, 9}, {1}, {3, 6, 7}
 Each set can be represented as an arbitrary structured tree

and the root is marked as the representative of that setand the root is marked as the representative of that setand the root is marked as the representative of that set

15 3
2 4

8
9

6 7

9

 This disjoint sets can be represented as an array – parent,
t[i] i th t f i A t’ t i it lf

 This disjoint sets can be represented as an array – parent,
t[i] i th t f i A t’ t i it lfparent[i] is the parent of i. A root’s parent is itself.parent[i] is the parent of i. A root’s parent is itself.

1 5 3 5 5 3 3 4 8
parent

2626

1 5 3 5 5 3 3 4 8

1 2 3 4 5 6 7 8 9

