
1

Assignment #3
3 Jugs Puzzle

Pei-yih Ting

http://www.mathsisfun.com/games/jugs-puzzle.html

http://www.cut-the-knot.org/ctk/Water.shtml

2

Problem

 Siméon Denis Poisson
 Two friends who have an eight-quart jug of water wish

to share it evenly. They also have two empty jars, one
holding five quarts, the other three. How can they
each measure exactly four quarts of water?

 Another story
 Three men robbed a gentleman of a vase, containing

24 ounces of balsam. Whilst running away they met a
glass seller, of whom they purchased three vessels.
On reaching a place of safety they wished to divide
the booty, but found that their vessels could hold 5,
11, and 13 ounces respectively. How could they
divide the balsam into equal portions?

3

A Simple Example

0: 0 0 7
1: 3 0 4
2: 0 3 4
3: 3 3 1

Our target is 1 litter.

A:3 B:5 C:7

Let the third jar be filled.

4

Configurations & Decisions

 You can represent the configuration of the
puzzle at each instant as a 3-tuple, e.g. (3, 0, 4),
or simply as a pair (3, 0)

 At each instant, the player has the following six
possible decisions to choose:

A ==> B B ==> A C ==> A
A ==> C B ==> C C ==> B

 The pouring of water at each step stops when
either 1. the target jar is full or

2. the source jar is empty
because the jars do not have any mark on them.

5

Breadth-First Search

0: A==>B 2: B==>A 4: C==>A
1: A==>C 3: B==>C 5: C==>B

Exhaustive search over all possible decisions

0 1 2 3 4 5

(0,0)

(3,0) (0,5)

0 1 2 3 4 5

(0,3) (3,4)

(3,3)

0 12345 0 1 2345

(0,4)

0 12 34 5

(2,5)(3,2)

0 12345

0 1 234 5

(0,2)

0 123450 12345

(3,1)

0 1 2 3 4 5

(2,0)

6

BFS Implementation
 Mark all possible goal configurations
 Keep “# of steps from the start configuration” in each cell
 Skip visited configurations

*

0

1

3

*

*

*
*

*

3

2

*

2

*

*

3

2

*

*

1

2

0

1

2

3

0 1 2 3 4 5

0 1 2 3 4 5

(0,0)

(3,0) (0,5)

0 1 2 3 4 5

(0,3) (3,4)

(3,3)

0 12345 0 1 2345

(0,4)

0 12 34 5
(2,5)(3,2)

0 12345

0 1 234 5

(0,2)

0 123450 12345

(3,1)

0 1 2 3 4 5

(2,0)

7

BFS Implementation (cont’d)

 Starting from 0, label direct followers as 1
 Find all 1’s, label direct followers as 2
 Find all 2’s, label direct followers as 3
 … until no more direct followers

*

0

*

*

*

*

* *

*

*

*

*

0

1

2

3

0 1 2 3 4 5

*

0

1

*

*

*

*

* *

*

*

*

*

10

1

2

3

0 1 2 3 4 5

*

0

1

*

*

*

*

*

2

*

2

*

*

2

*

*

1

2

0

1

2

3

0 1 2 3 4 5

*

0

1

*

*

*

*

*

2

*

2

*

*

2

*

*

1

2

0

1

2

3

0 1 2 3 4 5

*

0

1

3

*

*

*

*

*

3

2

*

2

*

*

3

2

*

*

1

2

0

1

2

3

0 1 2 3 4 5

*

0

1

3

*

*

*
*

*

3

2

*

2

*

*

3

2

*

*

1

2

0

1

2

3

0 1 2 3 4 5

Inefficient for jugs
with large capacity

8

BFS Implementation (cont’d)
 Instead of finding the next configuration globally in the array, let’s chain

all configurations scheduled to be considered when we search with the
BFS algorithm. You will find the following configurations sequentially:
(0,0), (3,0),(0,5), (0,3),(3,4),(3,2),(2,5), (3,3), (0,4),(0,2),(2,0), (3,1) as
you consider the six possible decisions.

 Let’s extend our array to keep this sequence. (formally this is a variation
of a queue data structure.)

 The next configuration can now be explored following the link.
 You can save some memory by encoding (r,s) as r*6+s

*

0 / (3,0)

1 / (0,5)

3 / (3,1)

*

*

* / (-,-)

*

*

3 / (2,0)

2 / (2,5)

*

2 / (3,4)

* / (0,4)

*

3 / (0,2)

2 / (3,2)

*

*

1 / (0,3)

2 / (3,3)

0

1

2

3

0 1 2 3 4 5

9

BFS Implementation (cont’d)
 The algorithm can stop the first time it finds a goal

configuration.

 The final thing to work on is “how to print the steps
once we find a target configuration?”.

 As the algorithm proceeds
from the start configuration
to the goal configuration.
It has to keep track of the
parent configuration with a
backward link for each node.
e.g.
(3,1) (0,4)  (3,4)

(3,0) (0,0)

0 1 2 3 4 5

(0,0)

(3,0)

0 1 2 3 4 5

(0,3) (3,4)

(3,3)

0 12345 0 1 2345

(0,4)

0 12345

(3,1) 10

BFS Implementation (cont’d)
 Each configuration has a unique parent configuration.
 Extend further our two-dim array implementation to keep the

extra parent information as we visit each configuration the
first time.

 e.g. (3,1)  (0,4)  (3,4)  (3,0)  (0,0)

 You can save some memory by encoding (r,s) as r*6+s

*

0 / (3,0)

1 / (0,5)
(0,0)

3 / (3,1)
(2,5)

*

*

* / (-,-)
(0,4)

*

*

3 / (2,0)
(3,2)

2 / (2,5)
(0,5)

*

2 / (3,4)
(3,0)

* / (0,4)
(0,3)

*

3 / (0,2)
(3,4)

2 / (3,2)
(3,0)

*

*

1 / (0,3)
(0,0)

2 / (3,3)
(0,5)

0

1

2

3

0 1 2 3 4 5

11

0: A==>B 2: B==>A 4: C==>A
1: A==>C 3: B==>C 5: C==>B

0 12345

0

1

2

3

0 1 2 3 4 5

(3,2)

0 1 2 3 4 5

(2,0)

/ (2,0)

3
(2,5)

0 1 234 5

(0,2)

3 / (0,2)
(3,4)

0 1 2 3 4 5

(0,0)

(3,0) (0,5)

/ (3,0)
1

1 / (0,5)

(0,0)

(0,0) **

0 *

** * * * *

**

0 12345

/ (0,3)

0 1 2 3 4 5

(0,3) (3,4)

2 / (3,4)

2

(3,0)

(3,0)
/ (3,2)

0 12 34 5

(2,5)(3,2)

2 / (2,5)

2

(0,5)

(0,5)
/ (3,1)

0 12345

(3,1)

*
(0,4)

/ (3,3)

(3,3)

0 12345

*

0 1 2345

(0,4)

3

/ (0,4)
(0,3)

12

Depth-First Search
 Again, an exhaustive search over all possible decisions

0 1 2 3 4 5

(0,0)

(3,0) (0,5)

0 1 2 3 4 5

(0,3) (3,4)

(3,3)

0 12345 0 1 2345

(0,4)

0 12 34 5

(2,5)(3,2)

0 12345

0 1 234 5

(0,2)

0 123450 12345

(3,1)

0 1 2 3 4 5

(2,0)

 Visit all nodes in a different order from BFS: go as deepest
as possible until no descendent exists, then the siblings.

13

DFS Implementation
 Because each configuration is visited at most once (some

configurations might not be visited), we can estimate the
upper bound of the depth of the search tree.

 For our previous example, depth <= (3+1)*(5+1) - #goals.
 You might get a more accurate estimate by considering the

“barycentric coordinates” described in
http://www.cut-the-knot.org/ctk/Water.shtml

 Iterative implementation:
remembering the current decisions in an array (see next slide)
1. Generate all possible decisions (next slide)
2. Calculate the corresponding configuration of jugs and

verify if a. it is valid, b. it has been visited, c. it is one of the goals

 Recursive implementation:
remembering the remaining decisions in the system stack

14

Generating All Possible Decisions
with 2-layer for loop

void next(int decisions[], int depth) {
int i;
for (i=depth-1; i>0; i--)

if (decisions[i]<5)
{ decisions[i]++; return; }

else
decisions[i] = 0;

decisions[0]++;
}

int a=3, b=5, depth=(a+1)*(b+1)-11;
int decisions[MAX_DEPTH];
for (i=0; i<depth; i++) decisions[i] = 0;
for (; decisions[0]<6; next(decisions, depth))

printArray(decisions, depth);

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 2
0 0 0 0 0 3
0 0 0 0 0 4
0 0 0 0 0 5
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 1 2
0 0 0 0 1 3
0 0 0 0 1 4
0 0 0 0 1 5
0 0 0 0 2 0
0 0 0 0 2 1
0 0 0 0 2 2
0 0 0 0 2 3

…

decisions

