Sudoku, Mathdoku, and
Related Problems

Pel-yih Ting

Generating Permutations

Exhaustive search
(depth first search)

5

51 =120
permutations

01 #include <stdio.h> current

1

int size, perm[12] = {0}, current=0, solCount=0, i,
26 int next(int size, int pivot, int perm|[
printf("Please input number of elements: “);127 {
scanf("%d", &size); 28 int i, collision;
| 29
while (current>=0) 30 while (perm[pivot]++ < size)
{ 31 {
current += next(size, current, perm); |32 collision = 0:
if (current == size) 33 for (i=0; i<pivot; i++)
{ 34 if (perm[pivot] == perm[i])
solCount++; 35 {
printf("%4d: ", solCount); 36 collision = 1:
for (i=0; i<size; i++) 37 break:
printf("%d ", perm[i]); 38 1
printf("\n"); 39 if (Icollision) return 1;
current = size-1; 40 }
} 41 perm[pivot] = O;
} 42 return -1;
printf("Total %d permutations\n“,solCount);}43 }

start of program

end of program

Sudoku

® Sudoku: In these three examples, 81
cells are divided into 9 blocks each with 9

cells (3-by-3). A player is required to fill in
the blank cells such that integers in each
row, each column, and each block are
permutations of {1,2,3,...,9}, i.e. no

duplication of numbers in each row,
column, or block.

/\/\
-

number of lines
row, column, value
row, column, value

Initial configuration

~

P RPPOOOOOW

o

~NOT O oo h~DNEFO

0 OU1TOoOUIT N O N

Data Representation

e Two dimensional integer array. int board[9][9];
Initialized with O0’s and fixed constraints

o|lo|lo|~N|lOo|lol|o|o
o|lo|lw|lo|lm|lo|lph|O]|O
Rlo|N|lo|lo|lo|lo|w]|o
N olololw|NIN|oO |k
o|lo|lo|lo|lo|o|lo|o|o
NjlojlolhMlO|O|lO|0|W
®|N|lo|lo|jlo|o|r|o|M~
o|lo|bh|lOo|N|O|IN|O|O
o|lo|N|o|lo|h|Oo|oO|O

Depth First Search Process

e EXxtension of permutation generation:
more constraints on the set of numbers
to be filled in each cell

6|1 3|4|8
3 8

COX X X X X X

© o X X X X X)X
© 54 30X i ¥ X M)

(©X X X X X X X X

Satisfying Constraints

e For each cell
e No two cells are assigned the same value in each row

for (1I=0; 1<9; I++)
If (value == board][i][icol]) return O;

e No two cells are assigned the same value in each column

for (I=0; I1<9; 1++)
If (value == board[irow][i]) return O;

e No two cells are assigned the same value in each 3x3

subblock for (i=irow/3*3; i<irow/3*3+3; i++)

for (J=icol/3*3; j<icol/3*3+3; |++)
If (value == board[i][j]) return O;

Mathdoku

4x4, 6X6, 8X8, ..., nXn

The values in each cell are from the set {1, 2, ..., n}
No repetition is allowed in each row and each column

In addition, the values in each non-regular subblocks should

satisfy the labeled arithmetic constraints, e.g.

13+ Is satisfied by 2-+5+6=153, 1- 1s satisfied by 4-3=1,
36* Is satisfied by 6*6%1=36, and 3/ Is satisfied by 6/2=3

Data Representation

1. Two dimensional integer array to store the chosen numbers.
2. Two dimensional integer array to store the constraint subblocks.

For example,

0
‘ 324

0 |312
Constraints are checked
at the end of a subblock

Basic Algorithm

Enumerating all cells with {1, 2, ..., n}
starting from the cell in the left-top corner,
from top to down, from left to right, i.e.

Satisfying row and column unigueness
constraints

Skipping all cells with fixed numbers

For the last cell of each arithmetic constraint
subblock, numbers in this subblock must +13
satisfy the specified constraint. 2

Succeeds if all cells are filled; fails otherwise
*2| 1

Repeat enumerating for next possible +al5
solutions 3

