
Chapter 10Chapter 10
RecursionRecursion

Problem Solving and Program Design in C
by Jeri R Hanly and Elliot B Koffman

Problem Solving and Program Design in C
by Jeri R Hanly and Elliot B Koffmanby Jeri R. Hanly and Elliot B. Koffman

Pei-yih Ting
by Jeri R. Hanly and Elliot B. Koffman

Pei-yih Ting

“To Iterate is Human, to Recurse, Divine”
-- L. Peter Deutsch

“ To err is human; to really foul things up
requires a computer ”requires a computer

-- Bill Vaughan

OutlineOutline
Nature of RecursionNature of RecursionNature of Recursion
Tracing a Recursive Function
Nature of Recursion
Tracing a Recursive Function
Recursive Mathematical Functions
Case Study: Recursive Selection Sort
Recursive Mathematical Functions
Case Study: Recursive Selection SortCase Study: Recursive Selection Sort
A Classic Case Study: Towers of Hanoi
Case Study: Recursive Selection Sort
A Classic Case Study: Towers of Hanoi
Common Programming ErrorsCommon Programming Errors

22

Recursive FunctionRecursive Function
A A recursive functionrecursive function is

 a kind of function that calls itself or
A A recursive functionrecursive function is

 a kind of function that calls itself or a kind of function that calls itself, or
 a function that is part of a cycle in the sequence of

function calls.

 a kind of function that calls itself, or
 a function that is part of a cycle in the sequence of

function calls. Mutually recursive

f1 f1 f2 fn…

y

An alternative to iteration (looping)An alternative to iteration (looping) Tail recursive equivalent

 A recursive solution is often less efficient than an
iterative solution in terms of computer time due to the

 A recursive solution is often less efficient than an
iterative solution in terms of computer time due to the
overhead for the extra function calls.

 More expressive (easier to write)
overhead for the extra function calls.

 More expressive (easier to write)

33

 Design is close to mathematical induction
 Design is an application of divide and conquer
 Design is close to mathematical induction
 Design is an application of divide and conquer

Nature of RecursionNature of Recursion
 Characteristics of recursive solutions

O i l f th bl h t i htf d
 Characteristics of recursive solutions

O i l f th bl h t i htf d One or more simple cases of the problem have straightforward,
non-recursive solutions

 The other cases can be redefined in terms of problems that are

 One or more simple cases of the problem have straightforward,
non-recursive solutions

 The other cases can be redefined in terms of problems that are The other cases can be redefined in terms of problems that are
closer to the simple cases

 By applying this redefinition process every time the recursive

 The other cases can be redefined in terms of problems that are
closer to the simple cases

 By applying this redefinition process every time the recursive By applying this redefinition process every time the recursive
function is called, eventually the problem is reduced entirely
to simple cases, which are relatively easy to solve

 By applying this redefinition process every time the recursive
function is called, eventually the problem is reduced entirely
to simple cases, which are relatively easy to solve

 Basic algorithm
if this is a simple case

 Basic algorithm
if this is a simple case

solve it
else

solve it
else

44

redefine the problem using solutions to simpler
problems

redefine the problem using solutions to simpler
problems

Splitting a ProblemSplitting a Problemp gp g

 If the problem of size 1 can be solved easily (i.e., the
simple case).

 If the problem of size 1 can be solved easily (i.e., the
simple case).

 If the problem of size n can be splitted easily into a
problem of size 1 and another problem of size n-1

 If the problem of size n can be splitted easily into a
problem of size 1 and another problem of size n-1problem of size 1 and another problem of size n-1.problem of size 1 and another problem of size n-1.

size n
problem

size 2
problem

size n-1
problem

size n-2
problem

size 1
problem…

size 1
problem

size 1
problem

size 1
problem

size 1
problem

55

Splitting a Problem (cont’d)Splitting a Problem (cont’d)p g ()p g ()
 An illustrative example: multiplication by addition An illustrative example: multiplication by addition
01 /*
02 * Performs integer multiplication using + operator.
03 * Pre: m and n are defined and n > 0
04 * Post: returns m * n
05 */
06 int06 int
07 multiply(int m, int n)
08 {
09 int ans;09 int ans;
10
11 if (n == 1)
12 /* i l */12 ans = m; /* simple case */
13 else
14 ans = m + multiply(m, n - 1); /* recursive step */

66

15
16 return (ans);
17 }

Tracing a Recursive FunctionTracing a Recursive Functiongg
multiply(6, 3)

m is 6
n is 3
3 == 1 is false

18
3 1 is false
ans is 6 + multiply(6, 2)
return ans

6 x 3

m is 6
n is 2
2 == 1 is false

12

6 x 3

= 6 + 6 x 2

2 == 1 is false
ans is 6 + multiply(6, 1)
return ans18

 6 + 6 x 2

= 6 + (6 + 6 x 1)
m is 6
n is 1
1 1 is true

612

77

 6 + (6 + 6 x 1) 1 == 1 is true
ans is 6
return ans6

Terminating ConditionTerminating Conditiongg
A recursive function always contains one or more A recursive function always contains one or more

terminating conditionsterminating conditions.
 A condition when a recursive function is processing a

terminating conditionsterminating conditions.
 A condition when a recursive function is processing a A condition when a recursive function is processing a

simple case instead of processing recursion.
 A condition when a recursive function is processing a

simple case instead of processing recursion.

Without suitable terminating conditions, the Without suitable terminating conditions, the g ,
recursive function may run forever.

i th i lti l f ti th if t t t

g ,
recursive function may run forever.

i th i lti l f ti th if t t te.g., in the previous multiply function, the if statement
“if (n == 1) …” is the terminating condition.

e.g., in the previous multiply function, the if statement
“if (n == 1) …” is the terminating condition.

88

Recursive Character CountingRecursive Character Countinggg
Count the number of occurrences of a given

character in a string
Count the number of occurrences of a given

character in a stringcharacter in a string.
e.g., the number of 's' in "Mississippi" is 4.

character in a string.
e.g., the number of 's' in "Mississippi" is 4.

Figure 10.4

M i s s i s s i p p i s a s s a f r a sM i s s i s s i p p i s a s s a f r a s

If I could just get someone to
count the s’s in this list,

then the number of s’s is either that number or 1 more,
depending on whether the first letter is an 's'.

99

p g

Character Counting (cont’d)Character Counting (cont’d)g ()g ()
01 /*/
02 * Count the number of occurrences of character ch in string str
03 */
04 int char buf[] = "Mississippi";
05 count(char ch, const char *str)
06 {
07 int ans;

[] pp ;
count('s', buf);

08
09 if (str[0] == '\0') /* simple case */
10 ans = 0;
11 l /* d fi bl i i */11 else /* redefine problem using recursion */
12 if (ch == str[0]) /* first character must be counted */
13 ans = 1 + count(ch, &str[1]);
14 else /* first character is not counted */
15 ans = count(ch, &str[1]);
16

1010

17 return (ans);
18 }

Reverse Input WordsReverse Input Words
01 /*
02 * Take n words as input and print them in reverse order on separate lines

pp

02 * Take n words as input and print them in reverse order on separate lines.
03 * Pre: n > 0
04 */
05 void05 void
06 reverse_input_words(int n)
07 {
08 char word[WORDSIZ]; /* local variable for storing one word */08 char word[WORDSIZ]; / local variable for storing one word /
09
10 if (n <= 1) { /* simple case: just one word to get and print */
11 scanf("%s", word); The last scanned o d is fi st p inted11 scanf(%s , word);
12 printf("%s\n", word);
13 } else { /* get this word; get and print the rest of the words in
14 reverse order; then print this word */

The last scanned word is first printed.

; p /
15 scanf("%s", word);
16 reverse_input_words(n - 1);
17 printf("%s\n", word);

1111

18 }
19 }

The scanned word will not be
printed until the recursion finishes.

Trace of Reverse Input WordsTrace of Reverse Input Wordspp
reverse_input_words(3)

n is 3
word is undefined
3 <= 1 is false

"bit " i t d

n is 2
word is undefined
2 <= 1 is false

" d" i t d

n is 1
word is undefined
1 <= 1 is true

"b t " i t dscan "bits" into word
reverse_input_words(2)
display "bits"
return

scan "and" into word
reverse_input_words(1)
display "and"
return

scan "bytes" into word

display "bytes"
return

Sequence of Events Call reverse_input_words with n equal to 3.
Scan the first word ("bits") into word.

return return return

()
Call reverse_input_words with n equal to 2.

Scan the second word ("and") into word.
Call reverse_input_words with n equal to 1.

Scan the third word ("bytes") into word

Input:
bits

d Scan the third word (bytes) into word.
Display the third word ("bytes").
Return from third call.

Display the second word ("and").

and
bytes
Output:
bytes

1212

p y ()
Return from second call.

Display the first word ("bits").
Return from original call.

bytes
and
bits

How C Maintains Recursive StepsHow C Maintains Recursive Stepspp
C keeps track of the values of variables and C keeps track of the values of variables and p

parameters by the stackstack data structure.
R ll th t t k i d t t t h th l t

p
parameters by the stackstack data structure.

R ll th t t k i d t t t h th l t Recall that stack is a data structure where the last
item added is the first item being processed. (LIFO)

 Recall that stack is a data structure where the last
item added is the first item being processed. (LIFO)

 There are two operations (push and pop) associated
with stack.

 There are two operations (push and pop) associated
with stack.

a dpop p sh d
a

a
b
c

b
c

d
b
c

pop push d

1313

Execution of Recursive FunctionExecution of Recursive Function
 Each time a function is called, the execution  Each time a function is called, the execution

state of the caller function (e.g., parameters, local
variables, and return address) are pushed onto the
state of the caller function (e.g., parameters, local
variables, and return address) are pushed onto the
stack as an activation frame.

When the execution of the called function is
stack as an activation frame.

When the execution of the called function isWhen the execution of the called function is
finished, the execution is restored by popping out
th ti t t f th t k

When the execution of the called function is
finished, the execution is restored by popping out
th ti t t f th t kthe execution state from the stack.

This is sufficient to maintain the execution of a
the execution state from the stack.

This is sufficient to maintain the execution of a
recursive function.
 The execution states of each recursive function are

recursive function.
 The execution states of each recursive function are

1414

 The execution states of each recursive function are
stored and kept in order on the stack.

 The execution states of each recursive function are
stored and kept in order on the stack.

Trace a Recursive FunctionTrace a Recursive Function
A recursive function is not easy to trace or debug.A recursive function is not easy to trace or debug.

 If there are hundreds of recursive steps, it is not useful
to set the breaking point or to trace step-by-step.

 If there are hundreds of recursive steps, it is not useful
to set the breaking point or to trace step-by-step.

A useful approach is inserting printing statements
and then watching the output (the calling sequence,

A useful approach is inserting printing statements
and then watching the output (the calling sequence,and then watching the output (the calling sequence,
arguments, and results) to trace the recursive
steps

and then watching the output (the calling sequence,
arguments, and results) to trace the recursive
stepssteps.

When and how to trace recursive functions
steps.

When and how to trace recursive functions
 During algorithm development, it is best to trace a

specific case simply by trusting any recursive call to
l b d h f

 During algorithm development, it is best to trace a
specific case simply by trusting any recursive call to

l b d h f
1515

return a correct value based on the function purpose.return a correct value based on the function purpose.

Trace a Recursive Function (cont’d)Trace a Recursive Function (cont’d)()()
 Below is a self-tracing version of function  Below is a self-tracing version of function

multiply as well as output generated by the call.multiply as well as output generated by the call.
01 int multiply(int m, int n) {p y(,) {
02 int ans;
03 printf("Entering multiply with m = %d, n = %d\n", m, n);
04 if (n == 1)04 if (n == 1)
05 ans = m;
06 else
07 ans = m + multiply(m, n - 1);
08 printf("multiply(%d, %d) returning %d\n", m, n, ans);
09 return (ans);09 return (ans);
10 } Entering multiply with m = 8, n = 3

Entering multiply with m = 8, n = 2
Entering multiply with m = 8, n = 1

1616

Entering multiply with m 8, n 1
multiply(8, 1) returning 8
multiply(8, 2) returning 16
multiply(8, 3) returning 24

Recursive Mathematical FunctionsRecursive Mathematical Functions
Many mathematical functions can be defined and

l d i l !
Many mathematical functions can be defined and

l d i l !solved recursively, e.g. n!solved recursively, e.g. n!
01 /*
02 * C t ! i i d fi iti02 * Compute n! using a recursive definition
03 * Pre: n >= 0
04 */
05 int05 int
06 factorial(int n)
07 {
08 int ans;08 int ans;
09
10 if (n == 0)
11 ans = 1;11 ans = 1;
12 else
13 ans = n * factorial(n - 1);
14

1717

14
15 return (ans);
16 }

Trace of Recursive factorialTrace of Recursive factorial
fact = factorial(3);

n is 3
ans is 3 * factorial(2)
return ans

6

n is 22

return ans

ans is 2 * factorial(1)
return ans

n is 1
ans is 1 * factorial(0)

1

n is 01

return ans

1818

n is 0
ans is 1
return ans

1

Iterative factorialIterative factorial
The previous function can also be implemented by

f l
The previous function can also be implemented by

f la for loop.
 The iterative implementation is usually more efficient.

a for loop.
 The iterative implementation is usually more efficient.

01 /*
02 * Computes n! iteratively
03 * Pre: n is greater than or equal to zero03 Pre: n is greater than or equal to zero
04 */
05 int factorial(int n)
06 {{
07 int i, /* local variables */
08 product = 1;
09 /* Compute the product n x (n-1) x (n-2) x ... x 2 x 1 */
10 for (i = n; i > 1; --i) {
11 product = product * i;
12 }

1919

13 /* Return function result */
14 return (product);
15 }

Recursive fibonacciRecursive fibonacci
The Fibonacci numbers are a sequence of The Fibonacci numbers are a sequence of

numbers that have many varied uses.
The Fibonacci sequence is defined as

numbers that have many varied uses.
The Fibonacci sequence is defined asThe Fibonacci sequence is defined as

 Fibonacci1 is 1
b

The Fibonacci sequence is defined as
 Fibonacci1 is 1

b Fibonacci2 is 1
 Fibonaccin is Fibonaccin-2 + Fibonaccin-1, for n>2
 Fibonacci2 is 1
 Fibonaccin is Fibonaccin-2 + Fibonaccin-1, for n>2n n 2 n 1

1 1 2 3 5 8 13 21 34 55

n n 2 n 1

1 1 2 3 5 8 13 21 34 551, 1, 2, 3, 5, 8, 13, 21, 34, 55, …1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

2020

Recursive fibonacci (cont’d)Recursive fibonacci (cont’d)()()
01 /*
02 * Computes the nth Fibonacci number
03 * Pre: n > 0
04 */
05 int
06 fibonacci(int n)
07 {07 {
08 int ans;
09
10 if (n == 1 || n == 2)
11 ans = 1;
12 elsee se
13 ans = fibonacci(n - 2) + fibonacci(n - 1);
14
15 return (ans);

2121

15 return (ans);
16 }

Recursive gcdRecursive gcdgg
 Euclidean algorithm for finding the greatest common

di i b d fi d i l
 Euclidean algorithm for finding the greatest common

di i b d fi d i ldivisor can be defined recursively
 gcd(m,n) is n if n divides m evenly

divisor can be defined recursively
 gcd(m,n) is n if n divides m evenly
 gcd(m,n) is gcd(n, remainder of m divided by n) otherwise gcd(m,n) is gcd(n, remainder of m divided by n) otherwise

01 /*
02 * Find the greatest common divisor of m and n recursively
03 * Pre: m and n are both > 0
04 */
05 int gcd(int m, int n) {
06 int ans;
07 if (m % n == 0)07 if (m % n == 0)
08 ans = n;
09 else
10 gcd(n m % n)

2222

10 ans = gcd(n, m % n);
11 return (ans);
12 }

Recursive Selection SortRecursive Selection Sort
Step 1: Problem

S t i di d i l ti t
Step 1: Problem

S t i di d i l ti t Sort an array in ascending order using a selection sort. Sort an array in ascending order using a selection sort.

n is the size of an unsorted array

n is 4

34

n is 3

34

n is 2

23 1534
45
23

unsorted
array

34
15
23

23
15
34

15
23
34

final
sorted
array

15 45 45 45
array

2323

switch
45, 15

switch
34, 23

switch
23, 15

Selection Sort (cont’d)Selection Sort (cont’d)()()
Step 3: DesignStep 3: DesignStep 3: Design

 Recursive algorithm for selection sort
1 if n is 1

Step 3: Design
 Recursive algorithm for selection sort

1 if n is 11. if n is 1
2. The array is sorted.

else

1. if n is 1
2. The array is sorted.

elseelse
3. Place the largest array value in last array

l t

else
3. Place the largest array value in last array

l telement
4. Sort the subarray which excludes the last

l t ([0] [2])

element
4. Sort the subarray which excludes the last

l t ([0] [2])array element (array[0]..array[n-2])array element (array[0]..array[n-2])

2424

Selection Sort (cont’d)Selection Sort (cont’d)()()
01 /*
02 * Finds the largest value in list array[0]..array[n-1] and exchanges it
03 * with the value at array[n-1]03 * with the value at array[n-1]
04 * Pre: n > 0 and first n elements of array are defined
05 * Post: array[n-1] contains largest value
06 */06 */
07 void
08 place_largest(int array[], /* input/output - array in which to place largest */
09 int n) /* input - number of array elements to consider */
10 {
11 int temp, /* temporary variable for exchange */
12 j, /* array subscript and loop control */
13 max_index; /* index of largest so far */
14
15 /* Save subscript of largest array value in max_index */
16 max_index = n - 1; /* assume last value is largest */
17 for (j = n - 2; j >= 0; --j)

2525

17 for (j n 2; j > 0; j)
18 if (array[j] > array[max_index])
19 max_index = j;

Selection Sort (cont’d)Selection Sort (cont’d)()()
21 /* Unless last element is already the largest, exchange the largest and the last */
22 if (max_index != n - 1) {
23 t [1]23 temp = array[n - 1];
24 array[n - 1] = array[max_index];
25 array[max_index] = temp;
26 }26 }
27 }
29 /*
30 * Sorts n elements of an array of integers30 * Sorts n elements of an array of integers
31 * Pre: n > 0 and first n elements of array are defined
32 * Post: array elements are in ascending order
33 */33 /
34 void
35 select_sort(int array[], /* input/output - array to sort */
36 int n) /* input - number of array elements to sort */36 int n) / input number of array elements to sort /
37 {
38 if (n > 1) {
39 place largest(array, n);

2626

p _ g (y,);
40 select_sort(array, n - 1);
41 }
42 }

Towers of HanoiTowers of Hanoi
The towers of Hanoi problem involves moving a

number of disks (in different sizes) from one
The towers of Hanoi problem involves moving a

number of disks (in different sizes) from onenumber of disks (in different sizes) from one
tower (or called “peg”) to another.
number of disks (in different sizes) from one
tower (or called “peg”) to another.
 The constraint is that the larger disk can never be placed

on top of a smaller disk
 The constraint is that the larger disk can never be placed

on top of a smaller disk
 Only one disk can be moved at each time
 There are three towers
 Only one disk can be moved at each time
 There are three towers

B CA

11
2

3
4

5

2727
Animation: http://www.mazeworks.com/hanoi/Animation: http://www.mazeworks.com/hanoi/

5

Tower of Hanoi (cont’d)Tower of Hanoi (cont’d)()()
Step 2: AnalysisStep 2: Analysis

 Problem inputs
 int n

 Problem inputs
 int n
 char from_peg
 char to peg
 char from_peg
 char to pegchar to_peg
 char aux_peg

 Problem output

char to_peg
 char aux_peg

 Problem output Problem output
A list of individual disk moves

 Problem output
A list of individual disk moves

2828

Tower of Hanoi (cont’d)Tower of Hanoi (cont’d)()()
1. Move four disks from A to B.
2 Move disk 5 from A to C B CA2. Move disk 5 from A to C.
3. Move four disks from B to C.

3 1 move three disks from B to A

1
2

3
43.1 move three disks from B to A.

3.2 Move disk 4 from B to C.
3.3 Move three disks from A to C.

4
5

B CA

1After Steps 1 2 1
2

3
4 5

After Steps 1,2

After Steps 1,2,
3 d 3 2

B CA

1

2929

3.1 and 3.2 1
2

3 4
5

Tower of Hanoi (cont’d)Tower of Hanoi (cont’d)()()
01 /*/
02 * Displays instructions for moving n disks from from_peg to to_peg using
03 * aux_peg as an auxiliary. Disks are numbered 1 to n (smallest to
04 * largest). Instructions call for moving one disk at a time and never
05 * require placing a larger disk on top of a smaller one.
06 */
07 void
08 tower(char from_peg, /* input - characters naming */
09 char to_peg, /* the problem's */
10 char aux_peg, /* three pegs */
11 i t) /* i t b f di k t */11 int n) /* input - number of disks to move */
12 {
13 if (n >= 1) {
14 tower(from peg aux peg to peg n 1);14 tower(from_peg, aux_peg, to_peg, n - 1);
15 printf("Move disk %d from peg %c to peg %c\n", n, from_peg, to_peg);
16 tower(aux_peg, to_peg, from_peg, n - 1);
17 }

3030

17 }
18 }

Output GeneratedOutput GeneratedOutput GeneratedOutput Generated
Move top 3 disks from peg A to

tower('A', 'C', 'B', 3);
Move top 3 disks from peg A to
peg C using peg B as auxiliary peg

Move disk 1 from A to C tower('A','C','B',1);
Move disk 2 from A to B
Move disk 1 from C to B

tower('A','B','C',2); tower('A','B','C',1);
tower('C','B','A',1);

Move disk 3 from A to C
Move disk 1 from B to A
M di k 2 f B C

tower('A','C','B',1);
tower('B','A','C',1);

Move disk 2 from B to C
Move disk 1 from A to C

tower('B','C','A',2); tower('B','C','A',1);
tower('A','C','B',1);

3131

Other ExampleOther Examplepp
九連環九連環

3232

Iterative versus RecursiveIterative versus Recursive
RecursiveRecursive

 Requires more time and space because of
extra function calls (not a problem for modern

 Requires more time and space because of
extra function calls (not a problem for modernextra function calls (not a problem for modern
computer)
M h i t d d d t d

extra function calls (not a problem for modern
computer)
M h i t d d d t d Much easier to read and understand

 For researchers developing solutions to complex
 Much easier to read and understand
 For researchers developing solutions to complex

problems that are at the frontiers of their
research areas, the benefits gained from
problems that are at the frontiers of their
research areas, the benefits gained fromresearch areas, the benefits gained from
increased clarity far outweigh the extra cost
in time and memory of running a recursive

research areas, the benefits gained from
increased clarity far outweigh the extra cost
in time and memory of running a recursive

3333

in time and memory of running a recursive
program
in time and memory of running a recursive
program

Common Programming ErrorsCommon Programming Errorsg gg g
 A recursive function may not terminate properly.

A ti ti t k fl
 A recursive function may not terminate properly.

A ti ti t k fl A run-time error message noting stack overflow or an access
violation is an indicator that a recursive function is not terminating

 Be aware that it is critical that every path through a non-void

 A run-time error message noting stack overflow or an access
violation is an indicator that a recursive function is not terminating

 Be aware that it is critical that every path through a non-void Be aware that it is critical that every path through a non void
function leads to a return statement

 The recopying of large arrays or other data structures

 Be aware that it is critical that every path through a non void
function leads to a return statement

 The recopying of large arrays or other data structurespy g g y
quickly consumes all available memory
 cl /Ge enable stack checks in VC

py g g y
quickly consumes all available memory
 cl /Ge enable stack checks in VC
 #pragma check_stack(on)
 cl /F10000000 self definition of stack size (bytes)

#pragma comment(linker "/stack:xxx /heap:yyy")

 #pragma check_stack(on)
 cl /F10000000 self definition of stack size (bytes)

#pragma comment(linker "/stack:xxx /heap:yyy") #pragma comment(linker, "/stack:xxx /heap:yyy")
 -Wl,-stack,50000 for dev C++ linker
 #pragma comment(linker, "/stack:xxx /heap:yyy")
 -Wl,-stack,50000 for dev C++ linker

3434

Hanoi Tower AnimationHanoi Tower AnimationHanoi Tower AnimationHanoi Tower Animation

A B C

1
2
33
4

1, A -> B程式輸出 1, C -> A 1, B -> C 1, A -> B1, A > B

1, B -> C
2, A -> C
1, B -> C

1, C > A
2, C -> B
1, A -> B

1, B > C
2, B -> A
1, C -> A

1, A > B
2, A -> C

3, A -> B 4, A -> C 3, B -> C

Iterative Hanoi TowerIterative Hanoi Tower
Hanoi Tower

G d
Hanoi Tower

G dGray code
A B C 000

1 2 3 001, move D1 to C

Gray code
A B C 000

1 2 3 001, move D1 to C1 2 3 001, move D1 to C
2 3 1 011, move D2 to B

3 2 1 010, move D1 to B

1 2 3 001, move D1 to C
2 3 1 011, move D2 to B

3 2 1 010, move D1 to B
3 1 2 110, move D3 to C

1 2 3 111, move D1 to A
1 2 3 101 mo e D2 to C

3 1 2 110, move D3 to C
1 2 3 111, move D1 to A

1 2 3 101 mo e D2 to C3 disks 1 2 3 101, move D2 to C
1 2 3 100, move D1 to C

1 2 3

1 2 3 101, move D2 to C
1 2 3 100, move D1 to C

1 2 3

3 disks

1 2 3
Note: Gray code specifies which disk to

move, D1 always has two choices
while other disks has a unique choice

1 2 3
Note: Gray code specifies which disk to

move, D1 always has two choices
while other disks has a unique choice

D1D2D3

3636

while other disks has a unique choice
for odd # of disks, D1 uses the sequence C B A C B A …
for even # of disks, D1 uses the sequence B C A B C A …

while other disks has a unique choice
for odd # of disks, D1 uses the sequence C B A C B A …
for even # of disks, D1 uses the sequence B C A B C A …

Iterative Hanoi TowerIterative Hanoi Tower
 







 



 Odd # of disks

 Alternate moves between the smallest disk and a non-smallest disk.
 For the smallest: always move to the right (# of pieces is even), rotate
 Alternate moves between the smallest disk and a non-smallest disk.
 For the smallest: always move to the right (# of pieces is even), rotate

3737

if necessary; always move to the left (# of pieces is odd), rotate also
 For the non-smallest: there is only one possible legal move.

if necessary; always move to the left (# of pieces is odd), rotate also
 For the non-smallest: there is only one possible legal move.

Iterative Hanoi Tower (cont’d)Iterative Hanoi Tower (cont’d)()()

Even # of disks

 Alternate moves between the smallest disk and a non-smallest disk.
 For the smallest: always move to the right (# of pieces is even) rotate
 Alternate moves between the smallest disk and a non-smallest disk.
 For the smallest: always move to the right (# of pieces is even) rotate

Even # of disks

3838

 For the smallest: always move to the right (# of pieces is even), rotate
if necessary; always move to the left (# of pieces is odd), rotate also

 For the non-smallest: there is only one possible legal move.

 For the smallest: always move to the right (# of pieces is even), rotate
if necessary; always move to the left (# of pieces is odd), rotate also

 For the non-smallest: there is only one possible legal move.

ImplementationImplementationpp
-1 mod 3 = 2
3 mod 3 = 0

1
2
3

2
1
02-dim array

of disks is odd
while not all disks in peg
of disks is odd
while not all disks in peg

-1 % 3 = -1
3 % 3 = 0

3
100
peg0

-1
0

peg1 peg2

y

while not all disks in peg2
if disk1 on pegi, move disk1 from pegi to peg(i-1) mod 3
find smaller diskj  disk1 on the top of pegi or peg(i 1) d 3

while not all disks in peg2
if disk1 on pegi, move disk1 from pegi to peg(i-1) mod 3
find smaller diskj  disk1 on the top of pegi or peg(i 1) d 3find smaller diskj  disk1 on the top of pegi or peg(i+1) mod 3,
move diskj to the last peg

of disks is even

find smaller diskj  disk1 on the top of pegi or peg(i+1) mod 3,
move diskj to the last peg

of disks is even# of disks is even
while not all disks in peg2

find disk1 on pegi, move disk1 from pegi to peg(i+1) mod 3

of disks is even
while not all disks in peg2

find disk1 on pegi, move disk1 from pegi to peg(i+1) mod 31 p gi, 1 p gi p g(i+1) mod 3
find smaller diskj  disk1 on the top of pegi or peg(i-1) mod 3,
move diskj to the last peg

1 p gi, 1 p gi p g(i+1) mod 3
find smaller diskj  disk1 on the top of pegi or peg(i-1) mod 3,
move diskj to the last peg

3939

j
Simpler rule for the moving directions for disk i, i=1, 2, 3, …, n:

if n-i is odd, move rightward, else move leftward

j
Simpler rule for the moving directions for disk i, i=1, 2, 3, …, n:

if n-i is odd, move rightward, else move leftward

Quick SortQuick SortQQ
 Ex. 9, 5, 12, 19, 2, 6, 4, 15, 8, 3, 7 Ex. 9, 5, 12, 19, 2, 6, 4, 15, 8, 3, 7
Goal: 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 19
Algorithm:
Goal: 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 19
Algorithm: g

 Divide and Conquer
 At each step, put an arbitrary element in its correct place

g
 Divide and Conquer
 At each step, put an arbitrary element in its correct place At each step, put an arbitrary element in its correct place

and partition the numbers into two groups
e.g. put 9 in its place

 At each step, put an arbitrary element in its correct place
and partition the numbers into two groups
e.g. put 9 in its placeg p pg p p

9
{5 2 6 4 8 3 7} {12 19 15}

 Now we have two sort problems with smaller sizes Now we have two sort problems with smaller sizes
{5, 2, 6, 4, 8, 3, 7} {12, 19, 15}

4040

 Question: how do we do the partitioning efficiently Question: how do we do the partitioning efficiently

Quick Sort (cont’d)Quick Sort (cont’d)
pivot

Q ()Q ()
9, 5, 12, 19, 2, 6, 4, 15, 8, 3, 7

pivot
istart

front
iend
rearfront rear

9, 5, 12, 19, 2, 6, 4, 15, 8, 3, 7步驟 1. while rear>istart &&
data[rear]>=data[pivot] front rear

步驟 2. while front<iend &&
data[front]<data[pivot]

9, 5, 12, 19, 2, 6, 4, 15, 8, 3, 7

data[rear]> data[pivot]
rear--

data[front]<data[pivot]
front++

9, 5, 7, 19, 2, 6, 4, 15, 8, 3, 12步驟 3. if rear>front
交換 d t [f t]及d t []

front rear

front rear
交換 data[front]及data[rear]
front++, rear--

重複步驟 1 至步驟 3 9 5 7 3 2 6 4 15 8 19 12
直到 front > rear 9, 5, 7, 3, 2, 6, 4, 15, 8, 19, 12

9, 5, 7, 3, 2, 6, 4, 8, 15, 19, 12
9 5 7 3 2 6 4 8 15 19 12交換 data[pivot] 及 data[rear]

(i.e. while (front <= rear) { … })

4141

9, 5, 7, 3, 2, 6, 4, 8, 15, 19, 12交換 data[pivot] 及 data[rear]
得到兩個長度比較短的排序問題

8, 5, 7, 3, 2, 6, 4, 9, 15, 19, 12

stdlib qsort()stdlib qsort()q ()q ()
01 #include <stdio.h>
02 #include <stdlib.h> // qsort()
03 int compare(const void *a, const void *b) {p (,) {
04 int *p1 = (int *) a, *p2 = (int *) b;
05 return p1[1] - p2[1];
06 } Result: 945 320 769 221
07 void main() {
08 int data[][2] = {{945, 123}, {221, 456}, {320, 210}, {769, 323}};
09 int i, ndata=sizeof(data)/sizeof(int)/2;
0 (d d 2* i f(i))10 qsort(data, ndata, 2*sizeof(int), compare);

11 for (i=0; i<ndata; i++) printf("%d ", data[i][0]);
12 }

base
123

210

base

width
123

456
int compare(const void *ptr1,

945 945

221 320

…

210

323

…

dt
(bytes)

num

456

210
const void *ptr2)

210 < 323  return -1

320 769

4242

…

456

…

323

0 3 3 etu

221769

MazeMaze end
0 1 2 3 4 5 6 7 8

 Starting at the bottom-left corner,
i.e. array index (8, 0), list any

 Starting at the bottom-left corner,
i.e. array index (8, 0), list any

X
XXXX

X
X

0
1
2y (,), y

path through the maze that reaches
the top-right corner, i.e. array

d () l h l d

y (,), y
path through the maze that reaches
the top-right corner, i.e. array

d () l h l d
X

XXX
XX

X
XX

XX

2
3
4

index (0, 8). Only horizontal and
vertical moves are allowed. You
cannot go outside the board

index (0, 8). Only horizontal and
vertical moves are allowed. You
cannot go outside the board

X
X

X
X X

X X X
X

5
6
7cannot go outside the board.

 DFS, recursion
 At each position there are at most 3

cannot go outside the board.
 DFS, recursion
 At each position there are at most 3 start (8,0)

X X
X
X

X
7
8

 At each position, there are at most 3
directions that need to be tried, some
of them is invalid.

 At each position, there are at most 3
directions that need to be tried, some
of them is invalid.

start (8,0)

X
X

X
X

o t e s a do t e s a d
X

X

4343

X X X
X

8 Queen Problem8 Queen ProblemQQ
 Placing eight chess queens on an 8×8

chessboard so that none of them can
 Placing eight chess queens on an 8×8

chessboard so that none of them canchessboard so that none of them can
capture any other using the standard
chess queen's moves. Thus, a solution
requires that no two queens share the

chessboard so that none of them can
capture any other using the standard
chess queen's moves. Thus, a solution
requires that no two queens share therequires that no two queens share the
same row, column, or diagonal.

 Brute force solution: DFS, recursion

requires that no two queens share the
same row, column, or diagonal.

 Brute force solution: DFS, recursion
 A fully brute force program need to search

the 28*8 solution space.
 If consider both row and column constraints

 A fully brute force program need to search
the 28*8 solution space.

 If consider both row and column constraints If consider both row and column constraints
first, a solution must be a permutation. A
brute force recursive program need to search the 8! solution space.

 If consider both row and column constraints
first, a solution must be a permutation. A
brute force recursive program need to search the 8! solution space.

 If both diagonal constraints are also considered, a queen must be placed
at (x, y), which satisfies both x+y and x-y being unique.

 If rotations and reflections are counted as one the 8 queen problem has

 If both diagonal constraints are also considered, a queen must be placed
at (x, y), which satisfies both x+y and x-y being unique.

 If rotations and reflections are counted as one the 8 queen problem has

4444

 If rotations and reflections are counted as one, the 8 queen problem has
12 distinct solutions out of 92 unique solutions.

 There is a fast heuristic solution to n-queen problems. (see wiki)

 If rotations and reflections are counted as one, the 8 queen problem has
12 distinct solutions out of 92 unique solutions.

 There is a fast heuristic solution to n-queen problems. (see wiki)

Hanoi Tower AnimationHanoi Tower Animation

1 2
3

4
1

2
3

4 1

2
3

4

1
2

3
4

1
234

1 2
34

1
2

34
1

2
3

412
3

4

1
2

3
4

1
234

1
2 3 4

1
2

3 4
12

3 41

2
3

4
1

2 3 4

B CA

1 24 24 144 234 34 34 2 412 44 234 2 3 43 43 41 42 3 4

4545

