電視有獎猜題 貧民百萬富翁,2008

Television quiz shows

ABC 1999: Who wants to be a millionaire

NBC 1964 Merf Griffin: Jeopardy

NBC 1975 Merf Griffin: Wheel of Fortune (word puzzle

like hangman)

知識王 app

Slumdog Millionaire

- ➤ The player starts with a prize of \$1, and is asked a sequence of n questions.
 - For each question, he may
 - quit and keep his prize
 - answer the question. If wrong, he quits with nothing. If correct, the prize is doubled, and he continues with the next question.
 - After the last question, he quits with his prize.
- ➤ The player wants to maximize his expected prize. Once each question is asked, the player is able to assess the probability p that he will be able to answer it. For each question, we assume that p is a random variable uniformly distributed over the range [t, 1], for 0≤t≤1.

Sample Input/Output

> Input

□ Input is a number of lines, each with two numbers: an integer
 1 <= n <= 30, and a real 0 <= t <= 1. Input is terminated by a line containing 0 0. This line should not be processed.

Output

For each input n and t, print the player's expected prize, if he plays the best strategy. Output should be rounded to three fractional digits.

Sample Input

1 0.5

1 0.3

2 0.6

24 0.25

00

> Sample Output

1.500

1.357

2.560

230.138

Expected Score

wrong

- Player's best strategy: quit if the score of not answering is larger than the expected score of answering; answe $S_1 = P_2 \cdot S_2 + (1-p_2) \cdot 0^{2} \cdot S_1$
- Let S_i be the expected score after Q_i is answered Q_i be the current score after Q_i is answered Q_i wrong expected score Q_i is Q_i answering Q_i expected score Q_i is Q_i is Q_i answering Q_i answering Q_i answering Q_i expected score Q_i is Q_i answering Q_i answering Q_i and Q_i is Q_i and Q_i and Q_i and Q_i and Q_i and Q_i and Q_i are Q_i and Q_i and Q_i and Q_i are Q_i are Q_i are Q_i are Q_i and Q_i are Q_i ar
- The best strategy depends on the actual probability $\mathbf{p_{i+1}}$, let $\mathbf{h} = \mathbf{s_i} / \mathbf{S_{i+1}}$ For $\mathbf{h} \ge \mathbf{t}$, the best strategy is **quit** if $\mathbf{t} \le \mathbf{p_{i+1}} < \mathbf{h} = \mathbf{s_i} / \mathbf{S_{i+1}}$ ($\mathbf{p_{i+1}} \ \mathbf{S_{i+1}} < \mathbf{s_i}$) the best strategy is **answer** if $\mathbf{h} \le \mathbf{p_{i+1}} \le \mathbf{1}$ ($\mathbf{p_{i+1}} \ \mathbf{S_{i+1}} \ge \mathbf{s_i}$)

the expected score after
$$Q_i$$
 is answered $S_i = \int_{t}^{h} \frac{S_i}{1-t} dp_{i+1} + \int_{h}^{1} \frac{p_{i+1}}{1-t} dp_{i+1} = \frac{h-t}{(1-t)} S_i + \frac{1-h^2}{2(1-t)} S_{i+1}$

For h < t
$$\leq$$
 p_{i+1} , the best strategy is **answer** $S_i = \int\limits_t^1 \frac{p_{i+1} \, S_{i+1}}{1 - t} dp_{i+1} = \frac{1 - t^2}{2(1 - t)} S_{i+1}$

Recursive Version

```
01 #include <stdio.h>
02 #include <stdlib.h>
03 double expectedScore(double s_i, int k, double t) {
      if (k == 0)
04
05
        return s_i;
      else {
06
07
        double S_ip1 = expectedScore(2*s_i, k-1, t);
80
        double h = s_i/S_{ip1};
        if (t > h)
09
10
           h = t
11
        return (s_i^*(h-t) + S_{ip1}^*(1-h^*h)/2) / (1-t);
12
                 14 int main(void) {
13 }
                 15
                      int n;
                     double t;
                 16
                      while (scanf("%d %lf", &n, &t) == 2 && n != 0)
                 17
                          printf("%.3lf\n", expectedScore(1, n, t));
                 18
                      system("pause");
                 19
                 20
                       return 0;
                 21 }
```

Iterative Version

$$S_{i} = \int_{t}^{h} \frac{S_{i}}{1-t} dp_{i+1} + \int_{h}^{1} \frac{p_{i+1} S_{i+1}}{1-t} dp_{i+1} = \frac{h-t}{(1-t)} S_{i} + \frac{1-h^{2}}{2(1-t)} S_{i+1}$$

```
01 double expectedScore(int n, double t) {
02
      double s_i, S_ip1, h;
03
      int k;
    s_i = pow(2, n-1); S_{ip1} = s_i*2;
04
     for (k=n; k>0; k--) \{ /* k-th question */
05
06
     h = s_i / S_{ip1};
   if (t > h) h = t;
07
     S_{ip1} = (s_{i}^{*}(h-t) +
80
                  S_{ip1*(1-h*h)/2} / (1-t);
09
        s_i /= 2;
10
11
12
      return S_ip1;
13 }
```

