電視有獎猜題

貧民百萬富翁, 2008

Television quiz shows

ABC 1999: Who wants to be a millionaire NBC 1964 Merf Griffin: Jeopardy NBC 1975 Merf Griffin: Wheel of Fortune (word puzzle like hangman)

知識王 app

Slumdog Millionaire

- The player starts with a prize of \$1, and is asked a sequence of n questions.
 - □ For each question, he may
 - quit and keep his prize
 - answer the question. If wrong, he quits with nothing. If correct, the prize is doubled, and he continues with the next question.
 - □ After the last question, he quits with his prize.
- ➤ The player wants to maximize his expected prize. Once each question is asked, the player is able to assess the probability p that he will be able to answer it. For each question, we assume that p is a random variable uniformly distributed over the range [t, 1], for 0≤t≤1.

2

Sample Input/Output

- > Input
 - Input is a number of lines, each with two numbers: an integer 1 <= n <= 30, and a real 0 <= t <= 1. Input is terminated by a line containing 0 0. This line should not be processed.

➤ Output

For each input n and t, print the player's expected prize, if he plays the best strategy. Output should be rounded to three fractional digits.

Sample Input	Sample Output
1 0.5	1.500
1 0.3	1.357
2 0.6	2.560
24 0.25	230.138
0 0	

Expected Score score: 1

- ➢ Player's best strategy: quit if the score of not answering is larger than score of answering; answe $S_1 = p_2 \cdot S_2 + (1-p_2) \cdot 0$ $P_2 correct$
- Let S_i be the expected score after Q_i is answered 0 let s_i be the current score after Q_i is answered wron

expected score S_i is s_i if quit answering 0 expected score S_i is $p_{i+1} \cdot S_{i+1} + (1-p_{i+1}) \cdot 0$, $t \le p_{i+1} \le 1$

➤ The best strategy depends on the actual probability p_{i+1}, let h = s_i / S_{i+1} For h ≥ t, { the best strategy is quit if t ≤ p_{i+1} < h = s_i / S_{i+1} (p_{i+1} S_{i+1} < s_i) the best strategy is answer if h ≤ p_{i+1} ≤ 1 (p_{i+1} S_{i+1} ≥ s_i)

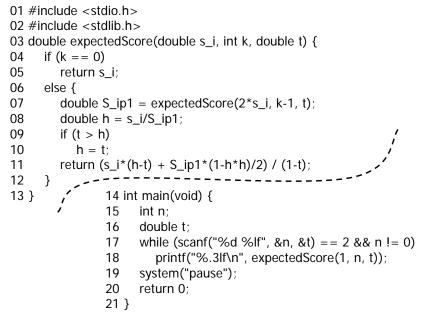
the expected score after Q_i is answered

For $h < t \le p_{i+1}$, the best strategy is **answer**

3

Q₂

Recursive Version



5

Iterative Version

quit

quit

quit

Q1

 Q_2

 Q_3

6

01 double expectedScore(int n, double t) { double s_i, S_ip1, h; 02 int k; 03 $s_i = pow(2, n-1); S_ip1 = s_i*2;$ 04 score: 1 for (k=n; k>0; k--) { /* k-th question */ 05 wrong dorrect $h = s_i / S_{ip1};$ 06 Ō 07 if (t > h) h = t; wrong $S_{ip1} = (s_{i*}(h-t) +$ 80 correct 09 S_ip1*(1-h*h)/2) / (1-t); Ó ∖s_i 10 s_i /= 2; wrong conrect 11 } 0 ⁸S_ip1 12 return S_ip1; 13 }