Dynamic Memory Allocation
g% with malloc() and free()

malloc() and free()

T

Pei-yih Ting

» Library routines for managing the heap

int *ary;

ptr = (int *) malloc(sizeof(int) * 100);
ary[5] = 3;

free(ary);

= Allocate and free arbitrary-sized chunks

of memory in any order

malloc() and free()

= More flexible than automatic variables (stacked)

= More costly in time and space

= malloc() and free() use complicated non-constant-
time algorithms

= Each block generally consumes two additional words
= Pointer to next empty block = Size of this block
= Common source of errors
= Using uninitialized memory
= Using freed memory
= Not allocating enough
= Neglecting to free disused blocks (memory leaks)

3

malloc() and free()

Memory usage errors so pervasive, entire
successful company (Pure Software) founded
to sell tool to track them down

Purify tool inserts code that verifies each
memory access

Reports accesses of uninitialized memory,
unallocated memory, etc.

Publicly-available Electric Fence tool does
something similar

Dynamic Storage Allocation

= What are malloc() and free() actually doing?
= Pool of memory segments:

from the
user side

Dynamic Storage Allocation

= Rules:
= Each segment contiguous in memory (no holes)
= Segments do not move once allocated

= malloc()
= Find memory area large enough for segment
= Mark that memory as allocated

n free()
= Mark the segment as unallocated

Dynamic Storage Allocation

m Three issues:

= How to maintain information about free

memory
= The algorithm for locating a suitable block

» The algorithm for freeing an allocated block

Simple Dynamic Storage
Allocation

m Three issues:

= How to maintain information about free
memory
= Linked list
= The algorithm for locating a suitable block
= First-fit
= The algorithm for freeing an allocated block
» Coalesce adjacent free blocks

Simple Dynamic Storage

Allocation

I~ © First large-enough
free block selected

Chain of

free)

blocks | |

Next | Next
Size Size Size
Allocated block
® Free block l malloc()

divided
into two

© Previous next
pointer updated

@ Newly-allocated
region begins with
a size value

Simple Dynamic Storage
Allocation

Appropriate
position in free list
free(a) identified

Newly-freed region
added to adjacent

free regions

10

= Many, many variants
» Other “fit” algorithms

Dynamic Storage Allocation

m Segregation of objects by sizes
= 8-byte objects in one region, 16 in another, etc.

= More intelligent list structures

11

